These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27527175)

  • 1. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.
    Yan X; Cheng H; Zhao Y; Yu W; Huang H; Zheng X
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Organic Carbon and Elemental Carbon in Forest Biomass Burning Smoke].
    Huang K; Liu G; Zhou LM; Li JH; Xu H; Wu D; Hong L; Chen HY; Yang WZ
    Huan Jing Ke Xue; 2015 Jun; 36(6):1998-2004. PubMed ID: 26387300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of fuel type and combustion phase on the toxicity of biomass smoke following inhalation exposure in mice.
    Kim YH; King C; Krantz T; Hargrove MM; George IJ; McGee J; Copeland L; Hays MD; Landis MS; Higuchi M; Gavett SH; Gilmour MI
    Arch Toxicol; 2019 Jun; 93(6):1501-1513. PubMed ID: 31006059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scale-up field experiment for the monitoring of a burning process using chemical, audio, and video sensors.
    Stavrakakis P; Agapiou A; Mikedi K; Karma S; Statheropoulos M; Pallis GC; Pappa A
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):891-900. PubMed ID: 23832773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES.
    Perera IE; Litton CD
    Trans Soc Min Metall Explor Inc; 2014; 336(1):381-390. PubMed ID: 26229418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Intelligent Failure Detection on a Wireless Sensor Network for Indoor Climate Conditions.
    Gutiérrez S; Ponce H
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of particulate and gas phases of simulated burn pit smoke exposures to impairment of respiratory function.
    Vance SA; Kim YH; George IJ; Dye JA; Williams WC; Schladweiler MJ; Gilmour MI; Jaspers I; Gavett SH
    Inhal Toxicol; 2023; 35(5-6):129-138. PubMed ID: 36692431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (Perera IE; Litton CD
    Fire Technol; 2015 Mar; 51(2):247-269. PubMed ID: 27546898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Sensor Network Combined with Cloud Computing for Air Quality Monitoring.
    Arroyo P; Herrero JL; Suárez JI; Lozano J
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.
    Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].
    Qin XL; Zhu X; Yang F; Zhao KR; Pang Y; Li ZY; Li XZ; Zhang JX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jul; 33(7):1908-11. PubMed ID: 24059199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wireless sensor network deployment for rural and forest fire detection and verification.
    Lloret J; Garcia M; Bri D; Sendra S
    Sensors (Basel); 2009; 9(11):8722-47. PubMed ID: 22291533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
    Lee D
    Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An OCARI-Based Wireless Sensor Network for Heat Measurements during Outdoor Fire Experiments.
    Carlotti T; Silvani X; Innocenti E; Morandini F; Bulté N; Dang T
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.
    Amaral SS; de Carvalho JA; Costa MA; Soares Neto TG; Dellani R; Leite LH
    Bioresour Technol; 2014 Jul; 164():55-63. PubMed ID: 24836706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques.
    Azmi N; Kamarudin LM; Zakaria A; Ndzi DL; Rahiman MHF; Zakaria SMMS; Mohamed L
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Components of Artificial Neural Networks Realized in CMOS Technology to be Used in Intelligent Sensors in Wireless Sensor Networks.
    Talaśka T
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.
    Pardo J; Zamora-Martínez F; Botella-Rocamora P
    Sensors (Basel); 2015 Apr; 15(4):9277-304. PubMed ID: 25905698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Distributed Learning Method for ℓ 1 -Regularized Kernel Machine over Wireless Sensor Networks.
    Ji X; Hou C; Hou Y; Gao F; Wang S
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27376298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends.
    Yıldız Z; Uzun H; Ceylan S; Topcu Y
    Bioresour Technol; 2016 Jan; 200():42-7. PubMed ID: 26476163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.