These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27527517)

  • 1. Instrumental variable analysis of multiplicative models with potentially invalid instruments.
    Shardell M; Ferrucci L
    Stat Med; 2016 Dec; 35(29):5430-5447. PubMed ID: 27527517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference.
    Liu Z; Ye T; Sun B; Schooling M; Tchetgen ET
    Biometrics; 2023 Sep; 79(3):2208-2219. PubMed ID: 35950778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways.
    Burgess S; Daniel RM; Butterworth AS; Thompson SG;
    Int J Epidemiol; 2015 Apr; 44(2):484-95. PubMed ID: 25150977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization.
    Dai JY; Chan KC; Hsu L
    Stat Med; 2014 Oct; 33(23):3986-4007. PubMed ID: 24863158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two robust tools for inference about causal effects with invalid instruments.
    Kang H; Lee Y; Cai TT; Small DS
    Biometrics; 2022 Mar; 78(1):24-34. PubMed ID: 33616910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity analysis and power for instrumental variable studies.
    Wang X; Jiang Y; Zhang NR; Small DS
    Biometrics; 2018 Dec; 74(4):1150-1160. PubMed ID: 29603714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of instrumental variable estimators for Mendelian randomization.
    Burgess S; Small DS; Thompson SG
    Stat Methods Med Res; 2017 Oct; 26(5):2333-2355. PubMed ID: 26282889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the Instrumental Inequalities to a Mendelian Randomization Study With Multiple Proposed Instruments.
    Diemer EW; Labrecque J; Tiemeier H; Swanson SA
    Epidemiology; 2020 Jan; 31(1):65-74. PubMed ID: 31790379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Review on correction methods related to the pleiotropic effect in Mendelian randomization].
    Gao X; Wang H; Wang T
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Mar; 40(3):360-365. PubMed ID: 30884619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Mendelian randomization method with binary risk factor and outcome.
    Allman PH; Aban I; Long DM; Bridges SL; Srinivasasainagendra V; MacKenzie T; Cutter G; Tiwari HK
    Genet Epidemiol; 2021 Jul; 45(5):549-560. PubMed ID: 33998053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general approach to sensitivity analysis for Mendelian randomization.
    Zhang W; Ghosh D
    Stat Biosci; 2021 Apr; 13(1):34-55. PubMed ID: 33737984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Challenges and factors that influencing causal inference and interpretation, based on Mendelian randomization studies].
    Wang YZ; Shen HB
    Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Aug; 41(8):1231-1236. PubMed ID: 32867428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Severity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies.
    Harbord RM; Didelez V; Palmer TM; Meng S; Sterne JA; Sheehan NA
    Stat Med; 2013 Mar; 32(7):1246-58. PubMed ID: 23080538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
    Kasza J; Wolfe R; Schuster T
    Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eliminating Survivor Bias in Two-stage Instrumental Variable Estimators.
    Vansteelandt S; Walter S; Tchetgen Tchetgen E
    Epidemiology; 2018 Jul; 29(4):536-541. PubMed ID: 29652757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.
    Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S
    J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instruments for causal inference: an epidemiologist's dream?
    Hernán MA; Robins JM
    Epidemiology; 2006 Jul; 17(4):360-72. PubMed ID: 16755261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates.
    Burgess S; Labrecque JA
    Eur J Epidemiol; 2018 Oct; 33(10):947-952. PubMed ID: 30039250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.