BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27527694)

  • 1. Marine fungi as source of new hydrophobins.
    Cicatiello P; Gravagnuolo AM; Gnavi G; Varese GC; Giardina P
    Int J Biol Macromol; 2016 Nov; 92():1229-1233. PubMed ID: 27527694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers.
    Pitocchi R; Cicatiello P; Birolo L; Piscitelli A; Bovio E; Varese GC; Giardina P
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces.
    Cicatiello P; Dardano P; Pirozzi M; Gravagnuolo AM; De Stefano L; Giardina P
    Biotechnol Bioeng; 2017 Oct; 114(10):2173-2186. PubMed ID: 28543036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII.
    Grunér MS; Paananen A; Szilvay GR; Linder MB
    Colloids Surf B Biointerfaces; 2017 Jul; 155():111-117. PubMed ID: 28415028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins.
    Fokina O; Fenchel A; Winandy L; Fischer R
    Appl Environ Microbiol; 2016 Nov; 82(21):6395-6402. PubMed ID: 27565614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei.
    Winandy L; Hilpert F; Schlebusch O; Fischer R
    Sci Rep; 2018 Aug; 8(1):12033. PubMed ID: 30104653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression of a hydrophobin HFB1 and evaluation of its contribution to producing stable foam.
    Lohrasbi-Nejad A; Torkzadeh-Mahani M; Hosseinkhani S
    Protein Expr Purif; 2016 Feb; 118():25-30. PubMed ID: 26431799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin.
    Sallada ND; Dunn KJ; Berger BW
    Biochemistry; 2018 Feb; 57(5):645-653. PubMed ID: 29277996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of hydrophobins: current state and perspectives.
    Wösten HA; Scholtmeijer K
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1587-97. PubMed ID: 25564034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excretory overexpression of hydrophobins as multifunctional biosurfactants in E. coli.
    Cui L; Cheng C; Qiu Y; Jiang T; He B
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1296-1302. PubMed ID: 33002537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two forms and two faces, multiple states and multiple uses: Properties and applications of the self-assembling fungal hydrophobins.
    Ren Q; Kwan AH; Sunde M
    Biopolymers; 2013 Nov; 100(6):601-12. PubMed ID: 23913717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials.
    Lo V; I-Chun Lai J; Sunde M
    Adv Exp Med Biol; 2019; 1174():161-185. PubMed ID: 31713199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins.
    Morris VK; Sunde M
    Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobins, the fungal coat unravelled.
    Wösten HA; de Vocht ML
    Biochim Biophys Acta; 2000 Sep; 1469(2):79-86. PubMed ID: 10998570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The essential role of aggregation for the emulsifying ability of a fungal CYS-rich protein.
    Pitocchi R; Cicatiello P; Illiano A; Fontanarosa C; Spina F; Varese GC; Amoresano A; Piscitelli A; Giardina P
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):358. PubMed ID: 38829381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces.
    Cheng Y; Wang B; Wang Y; Zhang H; Liu C; Yang L; Chen Z; Wang Y; Yang H; Wang Z
    J Colloid Interface Sci; 2020 Aug; 573():384-395. PubMed ID: 32298932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions.
    Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB
    Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins.
    Piscitelli A; Cicatiello P; Gravagnuolo AM; Sorrentino I; Pezzella C; Giardina P
    Biomolecules; 2017 Jun; 7(3):. PubMed ID: 28672843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of class II hydrophobins on polar surfaces.
    Grunér MS; Szilvay GR; Berglin M; Lienemann M; Laaksonen P; Linder MB
    Langmuir; 2012 Mar; 28(9):4293-300. PubMed ID: 22315927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q; Kwan AH; Sunde M
    Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.