These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27527774)

  • 1. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs.
    Hadsbjerg J; Friis MB; Fahnøe U; Nielsen J; Belsham GJ; Rasmussen TB
    Vet Microbiol; 2016 Aug; 192():123-134. PubMed ID: 27527774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Virus Population Profiles within Pigs Infected with Virulent Classical Swine Fever Viruses: Evidence for Bottlenecks in Transmission but Absence of Tissue-Specific Virus Variants.
    Johnston CM; Fahnøe U; Lohse L; Bukh J; Belsham GJ; Rasmussen TB
    J Virol; 2020 Sep; 94(19):. PubMed ID: 32699086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of translation initiation efficiency in classical swine fever virus.
    Friis MB; Rasmussen TB; Belsham GJ
    J Virol; 2012 Aug; 86(16):8681-92. PubMed ID: 22674994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Critical Requirements for Classical Swine Fever Virus NS2-3-Independent Virion Formation.
    Dubrau D; Schwindt S; Klemens O; Bischoff H; Tautz N
    J Virol; 2019 Sep; 93(18):. PubMed ID: 31292243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescue of the highly virulent classical swine fever virus strain "Koslov" from cloned cDNA and first insights into genome variations relevant for virulence.
    Fahnøe U; Pedersen AG; Risager PC; Nielsen J; Belsham GJ; Höper D; Beer M; Rasmussen TB
    Virology; 2014 Nov; 468-470():379-387. PubMed ID: 25240324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental infection with the Paderborn isolate of classical swine fever virus in 10-week-old pigs: determination of viral replication kinetics by quantitative RT-PCR, virus isolation and antigen ELISA.
    Uttenthal A; Storgaard T; Oleksiewicz MB; de Stricker K
    Vet Microbiol; 2003 Apr; 92(3):197-212. PubMed ID: 12523982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity.
    Li LF; Yu J; Li Y; Wang J; Li S; Zhang L; Xia SL; Yang Q; Wang X; Yu S; Luo Y; Sun Y; Zhu Y; Munir M; Qiu HJ
    J Virol; 2016 May; 90(9):4412-4426. PubMed ID: 26889038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive replication kinetics and pathogenicity in pigs co-infected with historical and newly invading classical swine fever viruses.
    Huang YL; Deng MC; Tsai KJ; Liu HM; Huang CC; Wang FI; Chang CY
    Virus Res; 2017 Jan; 228():39-45. PubMed ID: 27889614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 12-nt insertion in 3' untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge.
    Wang Y; Wang Q; Lu X; Zhang C; Fan X; Pan Z; Xu L; Wen G; Ning Y; Tang F; Xia Y
    Virology; 2008 May; 374(2):390-8. PubMed ID: 18279903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping.
    Johnston CM; Fahnøe U; Belsham GJ; Rasmussen TB
    BMC Genomics; 2018 Aug; 19(1):600. PubMed ID: 30092775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel single-step reverse genetics system for the generation of classical swine fever virus.
    Li L; Pang H; Wu R; Zhang Y; Tan Y; Pan Z
    Arch Virol; 2016 Jul; 161(7):1831-8. PubMed ID: 27068166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine.
    Risatti GR; Holinka LG; Lu Z; Kutish GF; Tulman ER; French RA; Sur JH; Rock DL; Borca MV
    Virology; 2005 Dec; 343(1):116-27. PubMed ID: 16168455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus.
    Guo K; Li H; Tan X; Wu M; Lv Q; Liu W; Zhang Y
    Virus Genes; 2017 Jun; 53(3):426-433. PubMed ID: 28341934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline to Threonine Mutation at Position 162 of NS5B of Classical Swine Fever Virus Vaccine C Strain Promoted Genome Replication and Infectious Virus Production by Facilitating Initiation of RNA Synthesis.
    Pang H; Li L; Liu H; Pan Z
    Viruses; 2021 Aug; 13(8):. PubMed ID: 34452387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical swine fever virus is genetically stable in vitro and in vivo.
    Vanderhallen H; Mittelholzer C; Hofmann MA; Koenen F
    Arch Virol; 1999; 144(9):1669-77. PubMed ID: 10542017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment and characterization of an infectious cDNA clone of a classical swine fever virus LOM strain.
    Park GS; Lim SI; Hong SH; Song JY
    J Vet Sci; 2012 Mar; 13(1):81-91. PubMed ID: 22437540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of classical swine fever virus associated with defective interfering particles containing a cytopathogenic subgenomic RNA isolated from wild boar.
    Aoki H; Ishikawa K; Sakoda Y; Sekiguchi H; Kodama M; Suzuki S; Fukusho A
    J Vet Med Sci; 2001 Jul; 63(7):751-8. PubMed ID: 11503902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenicity and kinetics of virus propagation in swine infected with the cytopathogenic classical swine fever virus containing defective interfering particles.
    Aoki H; Ishikawa K; Sekiguchi H; Suzuki S; Fukusho A
    Arch Virol; 2003 Feb; 148(2):297-310. PubMed ID: 12556994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus.
    Reimann I; Depner K; Trapp S; Beer M
    Virology; 2004 Apr; 322(1):143-57. PubMed ID: 15063124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites.
    Willcocks MM; Zaini S; Chamond N; Ulryck N; Allouche D; Rajagopalan N; Davids NA; Fahnøe U; Hadsbjerg J; Rasmussen TB; Roberts LO; Sargueil B; Belsham GJ; Locker N
    Nucleic Acids Res; 2017 Dec; 45(22):13016-13028. PubMed ID: 29069411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.