These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27527841)

  • 1. Expanding the molecular toolkit for the homoacetogen Clostridium ljungdahlii.
    Molitor B; Kirchner K; Henrich AW; Schmitz S; Rosenbaum MA
    Sci Rep; 2016 Aug; 6():31518. PubMed ID: 27527841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridium ljungdahlii represents a microbial production platform based on syngas.
    Köpke M; Held C; Hujer S; Liesegang H; Wiezer A; Wollherr A; Ehrenreich A; Liebl W; Gottschalk G; Dürre P
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):13087-92. PubMed ID: 20616070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii.
    Nagarajan H; Sahin M; Nogales J; Latif H; Lovley DR; Ebrahim A; Zengler K
    Microb Cell Fact; 2013 Nov; 12():118. PubMed ID: 24274140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins.
    Charubin K; Streett H; Papoutsakis ET
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.
    Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2013 Feb; 79(4):1102-9. PubMed ID: 23204413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traits of selected Clostridium strains for syngas fermentation to ethanol.
    Martin ME; Richter H; Saha S; Angenent LT
    Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.
    Banerjee A; Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2014 Apr; 80(8):2410-6. PubMed ID: 24509933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi).
    Woolston BM; Emerson DF; Currie DH; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():243-253. PubMed ID: 29906505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum.
    Annan FJ; Al-Sinawi B; Humphreys CM; Norman R; Winzer K; Köpke M; Simpson SD; Minton NP; Henstra AM
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4633-4648. PubMed ID: 30972463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.
    Tan Y; Liu J; Liu Z; Li F
    J Basic Microbiol; 2014 Sep; 54(9):996-1004. PubMed ID: 23720212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic modeling of clostridia: current developments and applications.
    Dash S; Ng CY; Maranas CD
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26755502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically.
    Tan Y; Liu J; Chen X; Zheng H; Li F
    Mol Biosyst; 2013 Nov; 9(11):2775-84. PubMed ID: 24056499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities.
    Charubin K; Bennett RK; Fast AG; Papoutsakis ET
    Metab Eng; 2018 Nov; 50():173-191. PubMed ID: 30055325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-Cys-Assisted Conversion of H
    Yang Y; Cao W; Shen F; Liu Z; Qin L; Liang X; Wan Y
    Appl Biochem Biotechnol; 2023 Feb; 195(2):844-860. PubMed ID: 36214953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic response of Clostridium ljungdahlii to oxygen exposure.
    Whitham JM; Tirado-Acevedo O; Chinn MS; Pawlak JJ; Grunden AM
    Appl Environ Microbiol; 2015 Dec; 81(24):8379-91. PubMed ID: 26431975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering.
    Yang Y; Nie X; Jiang Y; Yang C; Gu Y; Jiang W
    Biotechnol Adv; 2018; 36(4):905-914. PubMed ID: 29477757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical guide for genetic advancement of underdeveloped and intractable Clostridium.
    Pyne ME; Bruder M; Moo-Young M; Chung DA; Chou CP
    Biotechnol Adv; 2014; 32(3):623-41. PubMed ID: 24768687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.