BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 27528508)

  • 1. Depletion of Undecaprenyl Pyrophosphate Phosphatases Disrupts Cell Envelope Biogenesis in Bacillus subtilis.
    Zhao H; Sun Y; Peters JM; Gross CA; Garner EC; Helmann JD
    J Bacteriol; 2016 Nov; 198(21):2925-2935. PubMed ID: 27528508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in
    Radeck J; Lautenschläger N; Mascher T
    Front Microbiol; 2017; 8():2403. PubMed ID: 29259598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis.
    Zhao J; An J; Hwang D; Wu Q; Wang S; Gillespie RA; Yang EG; Guan Z; Zhou P; Chung HS
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus subtilis uses the SigM signaling pathway to prioritize the use of its lipid carrier for cell wall synthesis.
    Roney IJ; Rudner DZ
    PLoS Biol; 2024 Apr; 22(4):e3002589. PubMed ID: 38683856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance.
    Bernard R; El Ghachi M; Mengin-Lecreulx D; Chippaux M; Denizot F
    J Biol Chem; 2005 Aug; 280(32):28852-7. PubMed ID: 15946938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Willdigg JR; Patel Y; Arquilevich BE; Subramanian C; Frank MW; Rock CO; Helmann JD
    J Bacteriol; 2024 Mar; 206(3):e0001524. PubMed ID: 38323910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.
    Helmann JD
    Curr Opin Microbiol; 2016 Apr; 30():122-132. PubMed ID: 26901131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HupA, the main undecaprenyl pyrophosphate and phosphatidylglycerol phosphate phosphatase in Helicobacter pylori is essential for colonization of the stomach.
    Gasiorowski E; Auger R; Tian X; Hicham S; Ecobichon C; Roure S; Douglass MV; Trent MS; Mengin-Lecreulx D; Touzé T; Boneca IG
    PLoS Pathog; 2019 Sep; 15(9):e1007972. PubMed ID: 31487328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling.
    Tatar LD; Marolda CL; Polischuk AN; van Leeuwen D; Valvano MA
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2518-2529. PubMed ID: 17660416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling.
    Workman SD; Worrall LJ; Strynadka NCJ
    Nat Commun; 2018 Mar; 9(1):1159. PubMed ID: 29559664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid.
    Workman SD; Strynadka NCJ
    J Mol Biol; 2020 Aug; 432(18):4964-4982. PubMed ID: 32234311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis.
    Kasahara J; Kiriyama Y; Miyashita M; Kondo T; Yamada T; Yazawa K; Yoshikawa R; Yamamoto H
    J Bacteriol; 2016 Jun; 198(11):1585-1594. PubMed ID: 27002131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis.
    D'Elia MA; Millar KE; Bhavsar AP; Tomljenovic AM; Hutter B; Schaab C; Moreno-Hagelsieb G; Brown ED
    Chem Biol; 2009 May; 16(5):548-56. PubMed ID: 19477419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli.
    El Ghachi M; Derbise A; Bouhss A; Mengin-Lecreulx D
    J Biol Chem; 2005 May; 280(19):18689-95. PubMed ID: 15778224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis.
    Meeske AJ; Sham LT; Kimsey H; Koo BM; Gross CA; Bernhardt TG; Rudner DZ
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6437-42. PubMed ID: 25918422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis σ(V) confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids.
    Guariglia-Oropeza V; Helmann JD
    J Bacteriol; 2011 Nov; 193(22):6223-32. PubMed ID: 21926231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses.
    Eiamphungporn W; Helmann JD
    Mol Microbiol; 2008 Feb; 67(4):830-48. PubMed ID: 18179421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate.
    Jorgenson MA; Young KD
    J Bacteriol; 2016 Nov; 198(22):3070-3079. PubMed ID: 27573014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Pathways Carry Out α and β Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis.
    Chateau A; Oh SY; Tomatsidou A; Brockhausen I; Schneewind O; Missiakas D
    J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32457049
    [No Abstract]   [Full Text] [Related]  

  • 20. Assessment of transcriptional responses of Bacillus subtilis cells to the antibiotic enduracidin, which interferes with cell wall synthesis, using a high-density tiling chip.
    Rukmana A; Morimoto T; Takahashi H; Giyanto ; Ogasawara N
    Genes Genet Syst; 2009 Aug; 84(4):253-67. PubMed ID: 20057163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.