These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 27528607)
21. Asf1 can promote trimethylation of H3 K36 by Set2. Lin LJ; Minard LV; Johnston GC; Singer RA; Schultz MC Mol Cell Biol; 2010 Mar; 30(5):1116-29. PubMed ID: 20048053 [TBL] [Abstract][Full Text] [Related]
22. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Santos-Rosa H; Millán-Zambrano G; Han N; Leonardi T; Klimontova M; Nasiscionyte S; Pandolfini L; Tzelepis K; Bartke T; Kouzarides T Mol Cell; 2021 Jul; 81(13):2793-2807.e8. PubMed ID: 33979575 [TBL] [Abstract][Full Text] [Related]
23. Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex. Tompa R; Madhani HD Genetics; 2007 Feb; 175(2):585-93. PubMed ID: 17179083 [TBL] [Abstract][Full Text] [Related]
24. The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Chu Y; Sutton A; Sternglanz R; Prelich G Mol Cell Biol; 2006 Apr; 26(8):3029-38. PubMed ID: 16581778 [TBL] [Abstract][Full Text] [Related]
26. Gcn5- and Bre1-mediated Set2 degradation promotes chronological aging of Saccharomyces cerevisiae. Li YM; Mei YC; Liu AH; Wang RX; Chen R; Du HN Cell Rep; 2023 Oct; 42(10):113186. PubMed ID: 37796660 [TBL] [Abstract][Full Text] [Related]
27. Molecular determinants for α-tubulin methylation by SETD2. Kearns S; Mason FM; Rathmell WK; Park IY; Walker C; Verhey KJ; Cianfrocco MA J Biol Chem; 2021 Jul; 297(1):100898. PubMed ID: 34157286 [TBL] [Abstract][Full Text] [Related]
28. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Fontebasso AM; Schwartzentruber J; Khuong-Quang DA; Liu XY; Sturm D; Korshunov A; Jones DT; Witt H; Kool M; Albrecht S; Fleming A; Hadjadj D; Busche S; Lepage P; Montpetit A; Staffa A; Gerges N; Zakrzewska M; Zakrzewski K; Liberski PP; Hauser P; Garami M; Klekner A; Bognar L; Zadeh G; Faury D; Pfister SM; Jabado N; Majewski J Acta Neuropathol; 2013 May; 125(5):659-69. PubMed ID: 23417712 [TBL] [Abstract][Full Text] [Related]
29. Set2 family regulates mycotoxin metabolism and virulence via H3K36 methylation in pathogenic fungus Zhuang Z; Pan X; Zhang M; Liu Y; Huang C; Li Y; Hao L; Wang S Virulence; 2022 Dec; 13(1):1358-1378. PubMed ID: 35943142 [No Abstract] [Full Text] [Related]
30. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Wysocki R; Javaheri A; Allard S; Sha F; Côté J; Kron SJ Mol Cell Biol; 2005 Oct; 25(19):8430-43. PubMed ID: 16166626 [TBL] [Abstract][Full Text] [Related]
31. Set2-dependent K36 methylation is regulated by novel intratail interactions within H3. Psathas JN; Zheng S; Tan S; Reese JC Mol Cell Biol; 2009 Dec; 29(24):6413-26. PubMed ID: 19822661 [TBL] [Abstract][Full Text] [Related]
32. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. Ginsburg DS; Anlembom TE; Wang J; Patel SR; Li B; Hinnebusch AG J Biol Chem; 2014 Nov; 289(47):32656-70. PubMed ID: 25301943 [TBL] [Abstract][Full Text] [Related]
33. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Lam UTF; Chen ES Int J Biochem Cell Biol; 2022 Mar; 144():106155. PubMed ID: 34990836 [TBL] [Abstract][Full Text] [Related]
34. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. Gautam D; Johnson BA; Mac M; Moody CA PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361 [TBL] [Abstract][Full Text] [Related]
35. Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Adhvaryu KK; Morris SA; Strahl BD; Selker EU Eukaryot Cell; 2005 Aug; 4(8):1455-64. PubMed ID: 16087750 [TBL] [Abstract][Full Text] [Related]
36. Dot1 regulates nucleosome dynamics by its inherent histone chaperone activity in yeast. Lee S; Oh S; Jeong K; Jo H; Choi Y; Seo HD; Kim M; Choe J; Kwon CS; Lee D Nat Commun; 2018 Jan; 9(1):240. PubMed ID: 29339748 [TBL] [Abstract][Full Text] [Related]
37. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Fahey CC; Davis IJ Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833 [TBL] [Abstract][Full Text] [Related]
38. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Sun ZW; Allis CD Nature; 2002 Jul; 418(6893):104-8. PubMed ID: 12077605 [TBL] [Abstract][Full Text] [Related]
39. Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair. Chen R; Zhao MJ; Li YM; Liu AH; Wang RX; Mei YC; Chen X; Du HN Sci China Life Sci; 2024 Jun; 67(6):1089-1105. PubMed ID: 38842635 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous mutation of methylated lysine residues in histone H3 causes enhanced gene silencing, cell cycle defects, and cell lethality in Saccharomyces cerevisiae. Jin Y; Rodriguez AM; Stanton JD; Kitazono AA; Wyrick JJ Mol Cell Biol; 2007 Oct; 27(19):6832-41. PubMed ID: 17664279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]