These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 27528678)

  • 1. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity.
    Van Cappellen P; Ingall ED
    Science; 1996 Jan; 271():493-6. PubMed ID: 11541251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new model for atmospheric oxygen over Phanerozoic time.
    Berner RA; Canfield DE
    Am J Sci; 1989 Apr; 289(4):333-61. PubMed ID: 11539776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the global phosphorus cycle.
    Reinhard CT; Planavsky NJ; Gill BC; Ozaki K; Robbins LJ; Lyons TW; Fischer WW; Wang C; Cole DB; Konhauser KO
    Nature; 2017 Jan; 541(7637):386-389. PubMed ID: 28002400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].
    Ivlev AA
    Zh Evol Biokhim Fiziol; 2010; 46(3):247-60. PubMed ID: 20583589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.
    Walker JC; Kasting JF
    Glob Planet Change; 1992; 97():151-89. PubMed ID: 11537854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.
    Chen X; Ling HF; Vance D; Shields-Zhou GA; Zhu M; Poulton SW; Och LM; Jiang SY; Li D; Cremonese L; Archer C
    Nat Commun; 2015 May; 6():7142. PubMed ID: 25980960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the Ediacaran phosphorus cycle.
    Dodd MS; Shi W; Li C; Zhang Z; Cheng M; Gu H; Hardisty DS; Loyd SJ; Wallace MW; vS Hood A; Lamothe K; Mills BJW; Poulton SW; Lyons TW
    Nature; 2023 Jun; 618(7967):974-980. PubMed ID: 37258677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance.
    Ozaki K; Reinhard CT; Tajika E
    Geobiology; 2019 Jan; 17(1):3-11. PubMed ID: 30281196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precambrian evolution of the climate system.
    Walker JC
    Glob Planet Change; 1990; 82():261-89. PubMed ID: 11540918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The carbon isotope composition of ancient CO2 based on higher-plant organic matter.
    Gröcke DR
    Philos Trans A Math Phys Eng Sci; 2002 Apr; 360(1793):633-58. PubMed ID: 12804297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
    Johnston DT; Wolfe-Simon F; Pearson A; Knoll AH
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16925-9. PubMed ID: 19805080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotopic evidence for massive oxidation of organic matter following the great oxidation event.
    Kump LR; Junium C; Arthur MA; Brasier A; Fallick A; Melezhik V; Lepland A; Crne AE; Luo G
    Science; 2011 Dec; 334(6063):1694-6. PubMed ID: 22144465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term sedimentary recycling of rare sulphur isotope anomalies.
    Reinhard CT; Planavsky NJ; Lyons TW
    Nature; 2013 May; 497(7447):100-3. PubMed ID: 23615613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic.
    Colwyn DA; Sheldon ND; Maynard JB; Gaines R; Hofmann A; Wang X; Gueguen B; Asael D; Reinhard CT; Planavsky NJ
    Geobiology; 2019 Nov; 17(6):579-593. PubMed ID: 31436043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.
    Frei R; Gaucher C; Poulton SW; Canfield DE
    Nature; 2009 Sep; 461(7261):250-3. PubMed ID: 19741707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox stabilization of the atmosphere and oceans and marine productivity.
    Colman AS; Mackenzie FT; Holland HD
    Science; 1997 Jan; 275(5298):406-8. PubMed ID: 11536784
    [No Abstract]   [Full Text] [Related]  

  • 20. The evolution of the marine phosphate reservoir.
    Planavsky NJ; Rouxel OJ; Bekker A; Lalonde SV; Konhauser KO; Reinhard CT; Lyons TW
    Nature; 2010 Oct; 467(7319):1088-90. PubMed ID: 20981096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.