These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 27528705)
1. A New Chromatin-Cytoskeleton Link in Cancer. Giaccia AJ Mol Cancer Res; 2016 Dec; 14(12):1173-1175. PubMed ID: 27528705 [TBL] [Abstract][Full Text] [Related]
2. Dual Chromatin and Cytoskeletal Remodeling by SETD2. Park IY; Powell RT; Tripathi DN; Dere R; Ho TH; Blasius TL; Chiang YC; Davis IJ; Fahey CC; Hacker KE; Verhey KJ; Bedford MT; Jonasch E; Rathmell WK; Walker CL Cell; 2016 Aug; 166(4):950-962. PubMed ID: 27518565 [TBL] [Abstract][Full Text] [Related]
3. Chiang YC; Park IY; Terzo EA; Tripathi DN; Mason FM; Fahey CC; Karki M; Shuster CB; Sohn BH; Chowdhury P; Powell RT; Ohi R; Tsai YS; de Cubas AA; Khan A; Davis IJ; Strahl BD; Parker JS; Dere R; Walker CL; Rathmell WK Cancer Res; 2018 Jun; 78(12):3135-3146. PubMed ID: 29724720 [TBL] [Abstract][Full Text] [Related]
4. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Hacker KE; Fahey CC; Shinsky SA; Chiang YJ; DiFiore JV; Jha DK; Vo AH; Shavit JA; Davis IJ; Strahl BD; Rathmell WK J Biol Chem; 2016 Sep; 291(40):21283-21295. PubMed ID: 27528607 [TBL] [Abstract][Full Text] [Related]
5. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924 [TBL] [Abstract][Full Text] [Related]
6. Molecular determinants for α-tubulin methylation by SETD2. Kearns S; Mason FM; Rathmell WK; Park IY; Walker C; Verhey KJ; Cianfrocco MA J Biol Chem; 2021 Jul; 297(1):100898. PubMed ID: 34157286 [TBL] [Abstract][Full Text] [Related]
7. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. Gautam D; Johnson BA; Mac M; Moody CA PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361 [TBL] [Abstract][Full Text] [Related]
8. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. Li L; Wang Y J Biol Chem; 2017 Jul; 292(28):11951-11959. PubMed ID: 28546430 [TBL] [Abstract][Full Text] [Related]
9. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma. Ho TH; Park IY; Zhao H; Tong P; Champion MD; Yan H; Monzon FA; Hoang A; Tamboli P; Parker AS; Joseph RW; Qiao W; Dykema K; Tannir NM; Castle EP; Nunez-Nateras R; Teh BT; Wang J; Walker CL; Hung MC; Jonasch E Oncogene; 2016 Mar; 35(12):1565-74. PubMed ID: 26073078 [TBL] [Abstract][Full Text] [Related]
10. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Fahey CC; Davis IJ Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833 [TBL] [Abstract][Full Text] [Related]
11. SETD2, an epigenetic tumor suppressor: a focused review on GI tumor. Hu M; Hu M; Zhang Q; Lai J; Liu X Front Biosci (Landmark Ed); 2020 Jan; 25(4):781-797. PubMed ID: 31585917 [TBL] [Abstract][Full Text] [Related]
12. Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice. Koenning M; Wang X; Karki M; Jangid RK; Kearns S; Tripathi DN; Cianfrocco M; Verhey KJ; Jung SY; Coarfa C; Ward CS; Kalish BT; Grimm SL; Rathmell WK; Mostany R; Dere R; Rasband MN; Walker CL; Park IY Brain; 2021 Sep; 144(8):2527-2540. PubMed ID: 34014281 [TBL] [Abstract][Full Text] [Related]
13. Shaping the cellular landscape with Set2/SETD2 methylation. McDaniel SL; Strahl BD Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724 [TBL] [Abstract][Full Text] [Related]
15. SETD2 as a regulator of N6-methyladenosine RNA methylation and modifiers in cancer. Kumari S; Muthusamy S Eur J Cancer Prev; 2020 Nov; 29(6):556-564. PubMed ID: 33021769 [TBL] [Abstract][Full Text] [Related]
16. SETD2: an epigenetic modifier with tumor suppressor functionality. Li J; Duns G; Westers H; Sijmons R; van den Berg A; Kok K Oncotarget; 2016 Aug; 7(31):50719-50734. PubMed ID: 27191891 [TBL] [Abstract][Full Text] [Related]
17. Depletion of H3K36me2 recapitulates epigenomic and phenotypic changes induced by the H3.3K36M oncohistone mutation. Rajagopalan KN; Chen X; Weinberg DN; Chen H; Majewski J; Allis CD; Lu C Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619101 [TBL] [Abstract][Full Text] [Related]
18. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. de Almeida SF; Grosso AR; Koch F; Fenouil R; Carvalho S; Andrade J; Levezinho H; Gut M; Eick D; Gut I; Andrau JC; Ferrier P; Carmo-Fonseca M Nat Struct Mol Biol; 2011 Jul; 18(9):977-83. PubMed ID: 21792193 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Lam UTF; Chen ES Int J Biochem Cell Biol; 2022 Mar; 144():106155. PubMed ID: 34990836 [TBL] [Abstract][Full Text] [Related]
20. Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition. Bhattacharya S; Workman JL Epigenetics Chromatin; 2020 Oct; 13(1):40. PubMed ID: 33023640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]