These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27528772)

  • 21. Wake structure and kinematics in two insectivorous bats.
    Hubel TY; Hristov NI; Swartz SM; Breuer KS
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel hypothesis for how albatrosses optimize their flight physics in real-time: an extremum seeking model and control for dynamic soaring.
    Pokhrel S; Eisa SA
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36594630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opportunistic soaring by birds suggests new opportunities for atmospheric energy harvesting by flying robots.
    Mohamed A; Taylor GK; Watkins S; Windsor SP
    J R Soc Interface; 2022 Nov; 19(196):20220671. PubMed ID: 36415974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating fine-scale changes in turbulence using the movements of a flapping flier.
    Lempidakis E; Ross AN; Quetting M; Garde B; Wikelski M; Shepard ELC
    J R Soc Interface; 2022 Nov; 19(196):20220577. PubMed ID: 36349445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wind effects on bounding flight.
    Sachs G
    J Theor Biol; 2013 Jan; 316():35-41. PubMed ID: 22981923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Social eavesdropping allows for a more risky gliding strategy by thermal-soaring birds.
    Williams HJ; King AJ; Duriez O; Börger L; Shepard ELC
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30404907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.
    Duriez O; Kato A; Tromp C; Dell'Omo G; Vyssotski AL; Sarrazin F; Ropert-Coudert Y
    PLoS One; 2014; 9(1):e84887. PubMed ID: 24454760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turbulence-driven instabilities limit insect flight performance.
    Combes SA; Dudley R
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):9105-8. PubMed ID: 19458254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.).
    Barron A; Srinivasan MV
    J Exp Biol; 2006 Mar; 209(Pt 5):978-84. PubMed ID: 16481586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.
    Crall JD; Ravi S; Mountcastle AM; Combes SA
    J Exp Biol; 2015 Sep; 218(Pt 17):2728-37. PubMed ID: 26333927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S
    Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wind alters landing dynamics in bumblebees.
    Chang JJ; Crall JD; Combes SA
    J Exp Biol; 2016 Sep; 219(Pt 18):2819-2822. PubMed ID: 27436135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerodynamic characteristics of flying fish in gliding flight.
    Park H; Choi H
    J Exp Biol; 2010 Oct; 213(Pt 19):3269-79. PubMed ID: 20833919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.
    Bäckman J; Andersson A; Pedersen L; Sjöberg S; Tøttrup AP; Alerstam T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):543-564. PubMed ID: 28343237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning to soar in turbulent environments.
    Reddy G; Celani A; Sejnowski TJ; Vergassola M
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):E4877-84. PubMed ID: 27482099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Windscape and tortuosity shape the flight costs of northern gannets.
    Amélineau F; Péron C; Lescroël A; Authier M; Provost P; Grémillet D
    J Exp Biol; 2014 Mar; 217(Pt 6):876-85. PubMed ID: 24622894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.