These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27528773)

  • 1. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running.
    Baier DB; Gatesy SM; Dial KP
    PLoS One; 2013; 8(5):e63982. PubMed ID: 23691132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Range of motion in the avian wing is strongly associated with flight behavior and body mass.
    Baliga VB; Szabo I; Altshuler DL
    Sci Adv; 2019 Oct; 5(10):eaaw6670. PubMed ID: 31681840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small deviations in kinematics and body form dictate muscle performances in the finely tuned avian downstroke.
    Deetjen ME; Chin DD; Heers AM; Tobalske BW; Lentink D
    Elife; 2024 Feb; 12():. PubMed ID: 38408118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics of hover performance in Neotropical hummingbirds versus bats.
    Ingersoll R; Haizmann L; Lentink D
    Sci Adv; 2018 Sep; 4(9):eaat2980. PubMed ID: 30263957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.
    Wang X; McGowan AJ; Dyke GJ
    PLoS One; 2011; 6(12):e28672. PubMed ID: 22163324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the autorotation of animal wings.
    Ortega-Jimenez VM; Martín-Alcántara A; Fernandez-Feria R; Dudley R
    J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28077761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incipient wing flapping enhances aerial performance of a robotic paravian model.
    Sathe EA; Chronister NJ; Dudley R
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37253379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The aerodynamics and control of free flight manoeuvres in Drosophila.
    Dickinson MH; Muijres FT
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight.
    Agrawal S; Tobalske BW; Anwar Z; Luo H; Hedrick TL; Cheng B
    Proc Biol Sci; 2022 Dec; 289(1988):20222076. PubMed ID: 36475440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.
    Blanke A
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hummingbirds use wing inertial effects to improve manoeuvrability.
    Haque MN; Cheng B; Tobalske BW; Luo H
    J R Soc Interface; 2023 Oct; 20(207):20230229. PubMed ID: 37788711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moderate mass loss enhances flight performance via alteration of flight kinematics and postures in a passerine bird.
    Kou G; Wang Y; Ge S; Yin Y; Sun Y; Li D
    J Exp Biol; 2023 Dec; 226(24):. PubMed ID: 37947199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of avian wing shape and previously unrecognized trends in covert feathering.
    Wang X; Clarke JA
    Proc Biol Sci; 2015 Oct; 282(1816):20151935. PubMed ID: 26446812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.
    Dececchi TA; Larsson HC; Habib MB
    PeerJ; 2016; 4():e2159. PubMed ID: 27441115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control.
    Harvey C; Baliga VB; Goates CD; Hunsaker DF; Inman DJ
    J R Soc Interface; 2021 Jun; 18(179):20210132. PubMed ID: 34102085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult.
    Achache Y; Sapir N; Elimelech Y
    R Soc Open Sci; 2018 Feb; 5(2):171766. PubMed ID: 29515884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D atlas of tinamou (Neornithes: Tinamidae) pectoral morphology: Implications for reconstructing the ancestral neornithine flight apparatus.
    Widrig KE; Bhullar BS; Field DJ
    J Anat; 2023 Nov; 243(5):729-757. PubMed ID: 37358291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small body size is associated with increased evolutionary lability of wing skeleton proportions in birds.
    Orkney A; Hedrick BP
    Nat Commun; 2024 May; 15(1):4208. PubMed ID: 38806471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.