These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27528782)

  • 21. Rolling with the flow: bumblebees flying in unsteady wakes.
    Ravi S; Crall JD; Fisher A; Combes SA
    J Exp Biol; 2013 Nov; 216(Pt 22):4299-309. PubMed ID: 24031057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linking Small-Scale Flight Manoeuvers and Density Profiles to the Vertical Movement of Insects in the Nocturnal Stable Boundary Layer.
    Wainwright CE; Reynolds DR; Reynolds AM
    Sci Rep; 2020 Jan; 10(1):1019. PubMed ID: 31974508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optic flow-based collision-free strategies: From insects to robots.
    Serres JR; Ruffier F
    Arthropod Struct Dev; 2017 Sep; 46(5):703-717. PubMed ID: 28655645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Odour plumes and odour-mediated flight in insects.
    Cardé RT
    Ciba Found Symp; 1996; 200():54-66; discussion 66-70. PubMed ID: 8894290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does a 'turbophoretic' effect account for layer concentrations of insects migrating in the stable night-time atmosphere?
    Reynolds AM; Reynolds DR; Riley JR
    J R Soc Interface; 2009 Jan; 6(30):87-95. PubMed ID: 18611845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual navigation in flying insects.
    Srinivasan MV; Zhang SW
    Int Rev Neurobiol; 2000; 44():67-92. PubMed ID: 10605642
    [No Abstract]   [Full Text] [Related]  

  • 28. Mass seasonal bioflows of high-flying insect migrants.
    Hu G; Lim KS; Horvitz N; Clark SJ; Reynolds DR; Sapir N; Chapman JW
    Science; 2016 Dec; 354(6319):1584-1587. PubMed ID: 28008067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.
    Åkesson S
    J Anim Ecol; 2016 Jan; 85(1):1-4. PubMed ID: 26768333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth.
    Menz MHM; Scacco M; Bürki-Spycher HM; Williams HJ; Reynolds DR; Chapman JW; Wikelski M
    Science; 2022 Aug; 377(6607):764-768. PubMed ID: 35951704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field.
    Burnett NP; Badger MA; Combes SA
    PLoS One; 2022; 17(3):e0265911. PubMed ID: 35325004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.).
    Barron A; Srinivasan MV
    J Exp Biol; 2006 Mar; 209(Pt 5):978-84. PubMed ID: 16481586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Migratory hoverflies orientate north during spring migration.
    Hawkes WL; Weston ST; Cook H; Doyle T; Massy R; Guri EJ; Wotton Jimenez RE; Wotton KR
    Biol Lett; 2022 Oct; 18(10):20220318. PubMed ID: 36196552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel.
    Florio J; Verú LM; Dao A; Yaro AS; Diallo M; Sanogo ZL; Samaké D; Huestis DL; Yossi O; Talamas E; Chamorro ML; Frank JH; Biondi M; Morkel C; Bartlett C; Linton YM; Strobach E; Chapman JW; Reynolds DR; Faiman R; Krajacich BJ; Smith CS; Lehmann T
    Sci Rep; 2020 Nov; 10(1):20523. PubMed ID: 33239619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motion detection in insect orientation and navigation.
    Srinivasan MV; Poteser M; Kral K
    Vision Res; 1999 Aug; 39(16):2749-66. PubMed ID: 10492835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pheromone-regulated anemotaxis in flying moths.
    Kennedy JS; Marsh D
    Science; 1974 May; 184(4140):999-1001. PubMed ID: 4826172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Far eastern curlew and whimbrel prefer flying low - wind support and good visibility appear only secondary factors in determining migratory flight altitude.
    Galtbalt B; Lilleyman A; Coleman JT; Cheng C; Ma Z; Rogers DI; Woodworth BK; Fuller RA; Garnett ST; Klaassen M
    Mov Ecol; 2021 Jun; 9(1):32. PubMed ID: 34120657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Albatrosses employ orientation and routing strategies similar to yacht racers.
    Goto Y; Weimerskirch H; Fukaya K; Yoda K; Naruoka M; Sato K
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2312851121. PubMed ID: 38771864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of optic flow cues on honeybee flight control in wind.
    Baird E; Boeddeker N; Srinivasan MV
    Proc Biol Sci; 2021 Jan; 288(1943):20203051. PubMed ID: 33468001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continental-scale patterns in diel flight timing of high-altitude migratory insects.
    Haest B; Liechti F; Hawkes WL; Chapman J; Åkesson S; Shamoun-Baranes J; Nesterova AP; Comor V; Preatoni D; Bauer S
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230116. PubMed ID: 38705191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.