These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27528782)

  • 41. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences.
    Chapman JW; Reynolds DR; Wilson K
    Ecol Lett; 2015 Mar; 18(3):287-302. PubMed ID: 25611117
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wind and obstacle motion affect honeybee flight strategies in cluttered environments.
    Burnett NP; Badger MA; Combes SA
    J Exp Biol; 2020 Jul; 223(Pt 14):. PubMed ID: 32561633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vision in flying insects.
    Egelhaaf M; Kern R
    Curr Opin Neurobiol; 2002 Dec; 12(6):699-706. PubMed ID: 12490262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of the US Great Plains low-level jet in nocturnal migrant behavior.
    Wainwright CE; Stepanian PM; Horton KG
    Int J Biometeorol; 2016 Oct; 60(10):1531-1542. PubMed ID: 26872654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Animal orientation strategies for movement in flows.
    Chapman JW; Klaassen RH; Drake VA; Fossette S; Hays GC; Metcalfe JD; Reynolds AM; Reynolds DR; Alerstam T
    Curr Biol; 2011 Oct; 21(20):R861-70. PubMed ID: 22032194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multisensory Control of Orientation in Tethered Flying Drosophila.
    Currier TA; Nagel KI
    Curr Biol; 2018 Nov; 28(22):3533-3546.e6. PubMed ID: 30393038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England.
    Smith AD; Reynolds DR; Riley JR
    Bull Entomol Res; 2000 Jun; 90(3):265-77. PubMed ID: 10996867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds.
    Ravi S; Kolomenskiy D; Engels T; Schneider K; Wang C; Sesterhenn J; Liu H
    Sci Rep; 2016 Oct; 6():35043. PubMed ID: 27752047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Migratory flight on the Pacific Flyway: strategies and tendencies of wind drift compensation.
    Newcombe PB; Nilsson C; Lin TY; Winner K; Bernstein G; Maji S; Sheldon D; Farnsworth A; Horton KG
    Biol Lett; 2019 Sep; 15(9):20190383. PubMed ID: 31530114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Observations of movement dynamics of flying insects using high resolution lidar.
    Kirkeby C; Wellenreuther M; Brydegaard M
    Sci Rep; 2016 Jul; 6():29083. PubMed ID: 27375089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.
    Shepard EL; Williamson C; Windsor SP
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528784
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An aerial netting study of insects migrating at high altitude over England.
    Chapman JW; Reynolds DR; Smith AD; Smith ET; Woiwod IP
    Bull Entomol Res; 2004 Apr; 94(2):123-36. PubMed ID: 15153295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Commuting fruit bats beneficially modulate their flight in relation to wind.
    Sapir N; Horvitz N; Dechmann DK; Fahr J; Wikelski M
    Proc Biol Sci; 2014 May; 281(1782):20140018. PubMed ID: 24648227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.
    Crall JD; Ravi S; Mountcastle AM; Combes SA
    J Exp Biol; 2015 Sep; 218(Pt 17):2728-37. PubMed ID: 26333927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Where in the air? Aerial habitat use of nocturnally migrating birds.
    Horton KG; Van Doren BM; Stepanian PM; Farnsworth A; Kelly JF
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881761
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ecology of tern flight in relation to wind, topography and aerodynamic theory.
    Hedenström A; Åkesson S
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Navigating north: how body mass and winds shape avian flight behaviours across a North American migratory flyway.
    Horton KG; Van Doren BM; La Sorte FA; Fink D; Sheldon D; Farnsworth A; Kelly JF
    Ecol Lett; 2018 Jul; 21(7):1055-1064. PubMed ID: 29736919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.