These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27528782)

  • 61. Increased flight altitudes among migrating golden eagles suggest turbine avoidance at a Rocky Mountain wind installation.
    Johnston NN; Bradley JE; Otter KA
    PLoS One; 2014; 9(3):e93030. PubMed ID: 24671199
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Local motion adaptation enhances the representation of spatial structure at EMD arrays.
    Li J; Lindemann JP; Egelhaaf M
    PLoS Comput Biol; 2017 Dec; 13(12):e1005919. PubMed ID: 29281631
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Context-dependent olfactory enhancement of optomotor flight control in Drosophila.
    Chow DM; Frye MA
    J Exp Biol; 2008 Aug; 211(Pt 15):2478-85. PubMed ID: 18626082
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Visual control of flight speed in Drosophila melanogaster.
    Fry SN; Rohrseitz N; Straw AD; Dickinson MH
    J Exp Biol; 2009 Apr; 212(Pt 8):1120-30. PubMed ID: 19329746
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Solar heating may explain extreme diel flight altitude changes in migrating birds.
    Sjöberg S; Andersson A; Bäckman J; Hansson B; Malmiga G; Tarka M; Hasselquist D; Lindström Å; Alerstam T
    Curr Biol; 2023 Oct; 33(19):4232-4237.e2. PubMed ID: 37689066
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Wind Tunnels and Airflow-Driven Assays: Methods for Establishing the Cues and Orientation Mechanisms That Modulate Female Mosquito Attraction to Human Hosts.
    Cardé RT
    Cold Spring Harb Protoc; 2024 Aug; 2024(8):pdb.over107675. PubMed ID: 38190632
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Wind conditions influence breeding season movements in a nomadic polygynous shorebird.
    Krietsch J; Valcu M; Kempenaers B
    Proc Biol Sci; 2020 Feb; 287(1920):20192789. PubMed ID: 32075527
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spatial Encoding of Translational Optic Flow in Planar Scenes by Elementary Motion Detector Arrays.
    Lecoeur J; Baird E; Floreano D
    Sci Rep; 2018 Apr; 8(1):5821. PubMed ID: 29643402
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flight control of fruit flies: dynamic response to optic flow and headwind.
    Lawson KKK; Srinivasan MV
    J Exp Biol; 2017 Jun; 220(Pt 11):2005-2016. PubMed ID: 28314748
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Orientation to polarized light in tethered flying honeybees.
    Kobayashi N; Okada R; Sakura M
    J Exp Biol; 2020 Dec; 223(Pt 23):. PubMed ID: 33106299
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth,
    Copley S; Parthasarathy K; Willis MA
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 29967220
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bats Use Path Integration Rather Than Acoustic Flow to Assess Flight Distance along Flyways.
    Aharon G; Sadot M; Yovel Y
    Curr Biol; 2017 Dec; 27(23):3650-3657.e3. PubMed ID: 29153322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.
    Safi K; Kranstauber B; Weinzierl R; Griffin L; Rees EC; Cabot D; Cruz S; Proaño C; Takekawa JY; Newman SH; Waldenström J; Bengtsson D; Kays R; Wikelski M; Bohrer G
    Mov Ecol; 2013; 1(1):4. PubMed ID: 25709818
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Navigational strategies used by insects to find distant, wind-borne sources of odor.
    Cardé RT; Willis MA
    J Chem Ecol; 2008 Jul; 34(7):854-66. PubMed ID: 18581182
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Predicting insect migration density and speed in the daytime convective boundary layer.
    Bell JR; Aralimarad P; Lim KS; Chapman JW
    PLoS One; 2013; 8(1):e54202. PubMed ID: 23359799
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations.
    Reynolds DR; Chapman JW; Edwards AS; Smith AD; Wood CR; Barlow JF; Woiwod IP
    Bull Entomol Res; 2005 Jun; 95(3):259-74. PubMed ID: 15960880
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimal orientation in flows: providing a benchmark for animal movement strategies.
    McLaren JD; Shamoun-Baranes J; Dokter AM; Klaassen RH; Bouten W
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25056213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.