These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27528782)

  • 81. Wind effects on bounding flight.
    Sachs G
    J Theor Biol; 2013 Jan; 316():35-41. PubMed ID: 22981923
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Foraging at the edge of the world: low-altitude, high-speed manoeuvering in barn swallows.
    Warrick DR; Hedrick TL; Biewener AA; Crandell KE; Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528781
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A visual horizon affects steering responses during flight in fruit flies.
    Caballero J; Mazo C; Rodriguez-Pinto I; Theobald JC
    J Exp Biol; 2015 Sep; 218(Pt 18):2942-50. PubMed ID: 26232414
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Optic flow-based course control in insects.
    Mauss AS; Borst A
    Curr Opin Neurobiol; 2020 Feb; 60():21-27. PubMed ID: 31810007
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents.
    Stefanescu C; Alarcón M; Avila A
    J Anim Ecol; 2007 Sep; 76(5):888-98. PubMed ID: 17714267
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.
    Reynolds DR; Smith AD; Chapman JW
    Bull Entomol Res; 2008 Feb; 98(1):35-52. PubMed ID: 18076783
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations.
    Bernáth B; Gál J; Horváth G
    J Exp Biol; 2004 Feb; 207(Pt 5):755-65. PubMed ID: 14747408
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Understanding the migratory orientation program of birds: extending laboratory studies to study free-flying migrants in a natural setting.
    Thorup K; Holland RA; Tøttrup AP; Wikelski M
    Integr Comp Biol; 2010 Sep; 50(3):315-22. PubMed ID: 21558206
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Migrating birds avoid flying through fog and low clouds.
    Panuccio M; Dell'Omo G; Bogliani G; Catoni C; Sapir N
    Int J Biometeorol; 2019 Feb; 63(2):231-239. PubMed ID: 30687905
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Predicting spatial patterns of eagle migration using a mesoscale atmospheric model: a case study associated with a mountain-ridge wind development.
    Ainslie B; Alexander N; Johnston N; Bradley J; Pomeroy AC; Jackson PL; Otter KA
    Int J Biometeorol; 2014 Jan; 58(1):17-30. PubMed ID: 23325041
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences.
    Srygley RB; Dudley R
    Integr Comp Biol; 2008 Jul; 48(1):119-33. PubMed ID: 21669778
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Neuronal matched filters for optic flow processing in flying insects.
    Krapp HG
    Int Rev Neurobiol; 2000; 44():93-120. PubMed ID: 10605643
    [No Abstract]   [Full Text] [Related]  

  • 93. Turbulence explains the accelerations of an eagle in natural flight.
    Laurent KM; Fogg B; Ginsburg T; Halverson C; Lanzone MJ; Miller TA; Winkler DW; Bewley GP
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074786
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bird orientation: compensation for wind drift in migrating raptors is age dependent.
    Thorup K; Alerstam T; Hake M; Kjellén N
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S8-11. PubMed ID: 12952622
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China.
    Feng HQ; Wu KM; Cheng DF; Guo YY
    Bull Entomol Res; 2003 Apr; 93(2):115-24. PubMed ID: 12699532
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Unraveling navigational strategies in migratory insects.
    Merlin C; Heinze S; Reppert SM
    Curr Opin Neurobiol; 2012 Apr; 22(2):353-61. PubMed ID: 22154565
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Into rude air: hummingbird flight performance in variable aerial environments.
    Ortega-Jimenez VM; Badger M; Wang H; Dudley R
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528777
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW; Woodworth BK; Taylor PD; Norris DR
    Mov Ecol; 2015; 3(1):19. PubMed ID: 26279850
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Wind gates olfaction-driven search states in free flight.
    Stupski SD; van Breugel F
    Curr Biol; 2024 Oct; 34(19):4397-4411.e6. PubMed ID: 39067453
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Insect visual perception: complex abilities of simple nervous systems.
    Giurfa M; Menzel R
    Curr Opin Neurobiol; 1997 Aug; 7(4):505-13. PubMed ID: 9287201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.