These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27529195)

  • 21. Programming time-multiplexed reconfigurable hardware using a scalable neuromorphic compiler.
    Minkovich K; Srinivasa N; Cruz-Albrecht JM; Cho Y; Nogin A
    IEEE Trans Neural Netw Learn Syst; 2012 Jun; 23(6):889-901. PubMed ID: 24806761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of neuromorphic systems: from discrete components to analog VLSI chips (testing and communication issues).
    Dante V; Del Giudice P; Mattia M
    Ann Ist Super Sanita; 2001; 37(2):231-9. PubMed ID: 11758281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CerebelluMorphic: Large-Scale Neuromorphic Model and Architecture for Supervised Motor Learning.
    Yang S; Wang J; Zhang N; Deng B; Pang Y; Azghadi MR
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4398-4412. PubMed ID: 33621181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
    Rast A; Galluppi F; Davies S; Plana L; Patterson C; Sharp T; Lester D; Furber S
    Neural Netw; 2011 Nov; 24(9):961-78. PubMed ID: 21778034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors.
    Yue K; Liu Y; Lake RK; Parker AC
    Sci Adv; 2019 Apr; 5(4):eaau8170. PubMed ID: 31032402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic Elements for Neuromorphic Computing.
    Blachowicz T; Ehrmann A
    Molecules; 2020 May; 25(11):. PubMed ID: 32486173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.
    Linn E; Menzel S; Ferch S; Waser R
    Nanotechnology; 2013 Sep; 24(38):384008. PubMed ID: 23999250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A systematic method for configuring VLSI networks of spiking neurons.
    Neftci E; Chicca E; Indiveri G; Douglas R
    Neural Comput; 2011 Oct; 23(10):2457-97. PubMed ID: 21732859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware.
    Srinivasa N; Stepp ND; Cruz-Albrecht J
    Front Neurosci; 2015; 9():449. PubMed ID: 26648839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Human Brain Project and neuromorphic computing.
    Calimera A; Macii E; Poncino M
    Funct Neurol; 2013; 28(3):191-6. PubMed ID: 24139655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards a 'siliconeural computer': technological successes and challenges.
    Hughes MA; Shipston MJ; Murray AF
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2046):. PubMed ID: 26078350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.
    Tang J; Yuan F; Shen X; Wang Z; Rao M; He Y; Sun Y; Li X; Zhang W; Li Y; Gao B; Qian H; Bi G; Song S; Yang JJ; Wu H
    Adv Mater; 2019 Dec; 31(49):e1902761. PubMed ID: 31550405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A system hierarchy for brain-inspired computing.
    Zhang Y; Qu P; Ji Y; Zhang W; Gao G; Wang G; Song S; Li G; Chen W; Zheng W; Chen F; Pei J; Zhao R; Zhao M; Shi L
    Nature; 2020 Oct; 586(7829):378-384. PubMed ID: 33057220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.
    Srinivasa N; Zhang D; Grigorian B
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):585-608. PubMed ID: 24807453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex Learning in Bio-plausible Memristive Networks.
    Deng L; Li G; Deng N; Wang D; Zhang Z; He W; Li H; Pei J; Shi L
    Sci Rep; 2015 Jun; 5():10684. PubMed ID: 26090862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applying Neuromorphic Computing Simulation in Band Gap Prediction and Chemical Reaction Classification.
    Li B; Sun H; Shu H; Wang X
    ACS Omega; 2022 Jan; 7(1):168-175. PubMed ID: 35036688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasticity and Adaptation in Neuromorphic Biohybrid Systems.
    George R; Chiappalone M; Giugliano M; Levi T; Vassanelli S; Partzsch J; Mayr C
    iScience; 2020 Oct; 23(10):101589. PubMed ID: 33083749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms.
    Petrovici MA; Vogginger B; Müller P; Breitwieser O; Lundqvist M; Muller L; Ehrlich M; Destexhe A; Lansner A; Schüffny R; Schemmel J; Meier K
    PLoS One; 2014; 9(10):e108590. PubMed ID: 25303102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.