BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27529225)

  • 1. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.
    Pastur-Romay LA; Cedrón F; Pazos A; Porto-Pazos AB
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27529225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning and Its Applications in Biomedicine.
    Cao C; Liu F; Tan H; Song D; Shu W; Li W; Zhou Y; Bo X; Xie Z
    Genomics Proteomics Bioinformatics; 2018 Feb; 16(1):17-32. PubMed ID: 29522900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep neural nets as a method for quantitative structure-activity relationships.
    Ma J; Sheridan RP; Liaw A; Dahl GE; Svetnik V
    J Chem Inf Model; 2015 Feb; 55(2):263-74. PubMed ID: 25635324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.
    Xu Y; Ma J; Liaw A; Sheridan RP; Svetnik V
    J Chem Inf Model; 2017 Oct; 57(10):2490-2504. PubMed ID: 28872869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Omics.
    Tran NH; Zhang X; Li M
    Proteomics; 2018 Jan; 18(2):. PubMed ID: 29239117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Listen to the Brain-Auditory Sound Source Localization in Neuromorphic Computing Architectures.
    Schmid D; Oess T; Neumann H
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for predicting toxicity of chemicals: a mini review.
    Tang W; Chen J; Wang Z; Xie H; Hong H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?
    Wichmann FA; Geirhos R
    Annu Rev Vis Sci; 2023 Sep; 9():501-524. PubMed ID: 37001509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities.
    Pietrzak P; Szczęsny S; Huderek D; Przyborowski Ł
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for computational chemistry.
    Goh GB; Hodas NO; Vishnu A
    J Comput Chem; 2017 Jun; 38(16):1291-1307. PubMed ID: 28272810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstrating the Viability of Mapping Deep Learning Based EEG Decoders to Spiking Networks on Low-powered Neuromorphic Chips.
    Pals M; Belizon RJP; Berberich N; Ehrlich SK; Nassour J; Cheng G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6102-6105. PubMed ID: 34892509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressing Deep Networks by Neuron Agglomerative Clustering.
    Wang LN; Liu W; Liu X; Zhong G; Roy PP; Dong J; Huang K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics.
    He T; Kong R; Holmes AJ; Nguyen M; Sabuncu MR; Eickhoff SB; Bzdok D; Feng J; Yeo BTT
    Neuroimage; 2020 Feb; 206():116276. PubMed ID: 31610298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.