These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 27529355)
1. High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst. Du Z; Zhao H; Yi S; Xia Q; Gong Y; Zhang Y; Cheng X; Li Y; Gu L; Świerczek K ACS Nano; 2016 Sep; 10(9):8660-9. PubMed ID: 27529355 [TBL] [Abstract][Full Text] [Related]
2. A-Site Ordered Double Perovskite with in Situ Exsolved Core-Shell Nanoparticles as Anode for Solid Oxide Fuel Cells. Hou N; Yao T; Li P; Yao X; Gan T; Fan L; Wang J; Zhi X; Zhao Y; Li Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):6995-7005. PubMed ID: 30668911 [TBL] [Abstract][Full Text] [Related]
3. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells. Lo Faro M; Campagna Zignani S; Aricò AS Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698468 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells. Zhang W; Wang H; Guan K; Meng J; Wei Z; Liu X; Meng J ACS Appl Mater Interfaces; 2020 Jan; 12(1):461-473. PubMed ID: 31841308 [TBL] [Abstract][Full Text] [Related]
5. Unveiling the Interface Structure of the Exsolved Co-Fe Alloy Nanoparticles from Double Perovskite and Its Application in Solid Oxide Fuel Cells. Du Z; Gong Y; Zhao H; Zhang Y; Yi S; Gu L ACS Appl Mater Interfaces; 2021 Jan; 13(2):3287-3294. PubMed ID: 33400481 [TBL] [Abstract][Full Text] [Related]
6. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells. Xiao G; Wang S; Lin Y; Zhang Y; An K; Chen F ACS Appl Mater Interfaces; 2014 Nov; 6(22):19990-6. PubMed ID: 25333295 [TBL] [Abstract][Full Text] [Related]
7. Construction of Multifunctional Nanoarchitectures in One Step on a Composite Fuel Catalyst through In Situ Exsolution of La Wu X; Yu Y; Chen Y; Li L; Ma ZF; Yin YM ACS Appl Mater Interfaces; 2020 Aug; 12(31):34890-34900. PubMed ID: 32657114 [TBL] [Abstract][Full Text] [Related]
8. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts. Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640 [TBL] [Abstract][Full Text] [Related]
9. A Highly Efficient and Robust Perovskite Anode with Iron-Palladium Co-exsolutions for Intermediate-Temperature Solid-Oxide Fuel Cells. Li J; Wei B; Yue X; Lü Z ChemSusChem; 2018 Aug; 11(15):2593-2603. PubMed ID: 29851249 [TBL] [Abstract][Full Text] [Related]
10. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184 [TBL] [Abstract][Full Text] [Related]
11. Highly Stable and Efficient Perovskite Ferrite Electrode for Symmetrical Solid Oxide Fuel Cells. Fan W; Sun Z; Bai Y; Wu K; Cheng Y ACS Appl Mater Interfaces; 2019 Jul; 11(26):23168-23179. PubMed ID: 31180198 [TBL] [Abstract][Full Text] [Related]
12. Tape Casting of High-Performance Low-Temperature Solid Oxide Cells with Thin La Gao Z; Wang H; Miller E; Liu Q; Senn D; Barnett S ACS Appl Mater Interfaces; 2017 Mar; 9(8):7115-7124. PubMed ID: 28165214 [TBL] [Abstract][Full Text] [Related]
13. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst. Sun YF; Li JH; Cui L; Hua B; Cui SH; Li J; Luo JL Nanoscale; 2015 Jul; 7(25):11173-81. PubMed ID: 26061756 [TBL] [Abstract][Full Text] [Related]
14. In Situ Exsolved Ni-Decorated Ba(Ce Liu Y; Jia L; Chi B; Pu J; Li J ACS Omega; 2019 Dec; 4(25):21494-21499. PubMed ID: 31867545 [TBL] [Abstract][Full Text] [Related]
15. Tailoring Electrochemical Performance of Perovskite Anodes through Sun Z; Fan W; Bai Y; Wu K; Cheng Y ACS Appl Mater Interfaces; 2021 Jun; 13(25):29755-29763. PubMed ID: 34137578 [TBL] [Abstract][Full Text] [Related]
16. Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. Song Y; Wang W; Qu J; Zhong Y; Yang G; Zhou W; Shao Z ACS Appl Mater Interfaces; 2018 Dec; 10(48):41257-41267. PubMed ID: 30383360 [TBL] [Abstract][Full Text] [Related]
17. Synergistically Promoting Coking Resistance of a La Tang Y; Wang H; Wang R; Liu Q; Yan Z; Xu L; Liu X ACS Appl Mater Interfaces; 2022 Sep; 14(38):44002-44014. PubMed ID: 36106728 [TBL] [Abstract][Full Text] [Related]
18. Niobium Doped Lanthanum Strontium Ferrite as A Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells. Li J; Wei B; Cao Z; Yue X; Zhang Y; Lü Z ChemSusChem; 2018 Jan; 11(1):254-263. PubMed ID: 28976645 [TBL] [Abstract][Full Text] [Related]
19. Vanadium-Doped Strontium Molybdate with Exsolved Ni Nanoparticles as Anode Material for Solid Oxide Fuel Cells. Wan Y; Xing Y; Xie Y; Shi N; Xu J; Xia C ACS Appl Mater Interfaces; 2019 Nov; 11(45):42271-42279. PubMed ID: 31647214 [TBL] [Abstract][Full Text] [Related]
20. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells. Lan R; Cowin PI; Sengodan S; Tao S Sci Rep; 2016 Aug; 6():31839. PubMed ID: 27545200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]