BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27529473)

  • 21. The influence of topography on tissue engineering perspective.
    Mansouri N; SamiraBagheri
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():906-21. PubMed ID: 26838922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications.
    Turk M; Deliormanlı AM
    J Biomater Appl; 2017 Jul; 32(1):28-39. PubMed ID: 28541125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering.
    Wang W; Junior JRP; Nalesso PRL; Musson D; Cornish J; Mendonça F; Caetano GF; Bártolo P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():759-770. PubMed ID: 30948113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.
    Haslauer CM; Avery MR; Pourdeyhimi B; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):1050-8. PubMed ID: 25229198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Graphene: A Biocompatible and Biodegradable Scaffold with Enhanced Oxygenation.
    Loeblein M; Perry G; Tsang SH; Xiao W; Collard D; Coquet P; Sakai Y; Teo EH
    Adv Healthc Mater; 2016 May; 5(10):1177-91. PubMed ID: 26946189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds.
    Seyedsalehi A; Daneshmandi L; Barajaa M; Riordan J; Laurencin CT
    Sci Rep; 2020 Dec; 10(1):22210. PubMed ID: 33335152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a porous 3D graphene-PDMS scaffold for improved osseointegration.
    Li J; Liu X; Crook JM; Wallace GG
    Colloids Surf B Biointerfaces; 2017 Nov; 159():386-393. PubMed ID: 28818783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications.
    Zhang Y; Wang QS; Yan K; Qi Y; Wang GF; Cui YL
    J Biomed Mater Res A; 2016 Aug; 104(8):1863-70. PubMed ID: 27027247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications.
    Solìs Moré Y; Panella G; Fioravanti G; Perrozzi F; Passacantando M; Giansanti F; Ardini M; Ottaviano L; Cimini A; Peniche C; Ippoliti R
    J Biomed Mater Res A; 2018 Jun; 106(6):1585-1594. PubMed ID: 29424473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and cytocompatibility of in situ crosslinked carbon nanomaterial films.
    Patel SC; Lalwani G; Grover K; Qin YX; Sitharaman B
    Sci Rep; 2015 May; 5():10261. PubMed ID: 26018775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.
    Waiwijit U; Maturos T; Pakapongpan S; Phokharatkul D; Wisitsoraat A; Tuantranont A
    J Biomater Appl; 2016 Aug; 31(2):230-40. PubMed ID: 27358375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro.
    Zhang Z; Li F; Tian H; Guan K; Zhao G; Shan J; Ren D
    Chin Med J (Engl); 2014; 127(2):314-21. PubMed ID: 24438622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
    Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW
    Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering.
    Hasanzadeh E; Ebrahimi-Barough S; Mirzaei E; Azami M; Tavangar SM; Mahmoodi N; Basiri A; Ai J
    J Biomed Mater Res A; 2019 Apr; 107(4):802-814. PubMed ID: 30578713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.