These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27529476)

  • 1. Decoding the Locus of Covert Visuospatial Attention from EEG Signals.
    Thiery T; Lajnef T; Jerbi K; Arguin M; Aubin M; Jolicoeur P
    PLoS One; 2016; 11(8):e0160304. PubMed ID: 27529476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding attention control and selection in visual spatial attention.
    Hong X; Bo K; Meyyappan S; Tong S; Ding M
    Hum Brain Mapp; 2020 Oct; 41(14):3900-3921. PubMed ID: 32542852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visuospatial information processing load and the ratio between parietal cue and target P3 amplitudes in the Attentional Network Test.
    Abramov DM; Pontes M; Pontes AT; Mourao-Junior CA; Vieira J; Quero Cunha C; Tamborino T; Galhanone PR; deAzevedo LC; Lazarev VV
    Neurosci Lett; 2017 Apr; 647():91-96. PubMed ID: 28336341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (C)overt attention and visual speller design in an ERP-based brain-computer interface.
    Treder MS; Blankertz B
    Behav Brain Funct; 2010 May; 6():28. PubMed ID: 20509913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the efficacy of ERP-based BCIs using different modalities of covert visuospatial attention and a genetic algorithm-based classifier.
    Marchetti M; Onorati F; Matteucci M; Mainardi L; Piccione F; Silvoni S; Priftis K
    PLoS One; 2013; 8(1):e53946. PubMed ID: 23342043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study.
    Meyberg S; Sommer W; Dimigen O
    Neuropsychologia; 2017 May; 99():64-80. PubMed ID: 28254651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamics of shifting visuospatial attention revealed by event-related potentials.
    Nobre AC; Sebestyen GN; Miniussi C
    Neuropsychologia; 2000; 38(7):964-74. PubMed ID: 10775707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related reduction of hemispheric lateralisation for spatial attention: An EEG study.
    Learmonth G; Benwell CSY; Thut G; Harvey M
    Neuroimage; 2017 Jun; 153():139-151. PubMed ID: 28343987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task.
    Zhao Z; Wang C
    Behav Neurol; 2019; 2019():1410425. PubMed ID: 31565094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise.
    Smout CA; Mattingley JB
    J Cogn Neurosci; 2018 Aug; 30(8):1119-1129. PubMed ID: 29791299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dealing with ocular artifacts on lateralized ERPs in studies of visual-spatial attention and memory: ICA correction versus epoch rejection.
    Drisdelle BL; Aubin S; Jolicoeur P
    Psychophysiology; 2017 Jan; 54(1):83-99. PubMed ID: 28000252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
    Green JJ; Boehler CN; Roberts KC; Chen LC; Krebs RM; Song AW; Woldorff MG
    J Neurosci; 2017 Aug; 37(33):7803-7810. PubMed ID: 28698387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features.
    Xu M; Wang Y; Nakanishi M; Wang YT; Qi H; Jung TP; Ming D
    J Neural Eng; 2016 Dec; 13(6):066003. PubMed ID: 27705952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study.
    Capotosto P; Corbetta M; Romani GL; Babiloni C
    J Cogn Neurosci; 2012 Dec; 24(12):2363-71. PubMed ID: 22905824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding covert shifts of attention induced by ambiguous visuospatial cues.
    Trachel RE; Clerc M; Brochier TG
    Front Hum Neurosci; 2015; 9():358. PubMed ID: 26150780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.