BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 27529501)

  • 1. Short Synthetic Terminators for Assembly of Transcription Units in Vitro and Stable Chromosomal Integration in Yeast S. cerevisiae.
    MacPherson M; Saka Y
    ACS Synth Biol; 2017 Jan; 6(1):130-138. PubMed ID: 27529501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short Synthetic Terminators for Improved Heterologous Gene Expression in Yeast.
    Curran KA; Morse NJ; Markham KA; Wagman AM; Gupta A; Alper HS
    ACS Synth Biol; 2015 Jul; 4(7):824-32. PubMed ID: 25686303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast Synthetic Terminators: Fine Regulation of Strength through Linker Sequences.
    Wang Z; Wei L; Sheng Y; Zhang G
    Chembiochem; 2019 Sep; 20(18):2383-2389. PubMed ID: 30974044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast.
    Jovicevic D; Blount BA; Ellis T
    Bioessays; 2014 Sep; 36(9):855-60. PubMed ID: 25048260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Terminator Function Can Be Modulated and Designed on the Basis of Predictions of Nucleosome Occupancy.
    Morse NJ; Gopal MR; Wagner JM; Alper HS
    ACS Synth Biol; 2017 Nov; 6(11):2086-2095. PubMed ID: 28771342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembling large DNA segments in yeast.
    Muller H; Annaluru N; Schwerzmann JW; Richardson SM; Dymond JS; Cooper EM; Bader JS; Boeke JD; Chandrasegaran S
    Methods Mol Biol; 2012; 852():133-50. PubMed ID: 22328431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Assembly of DNA Using Yeast Homologous Recombination (YHR).
    Chandran S; Shapland E
    Methods Mol Biol; 2017; 1472():187-92. PubMed ID: 27671941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.
    Yuan J; Ching CB
    ACS Synth Biol; 2015 Jan; 4(1):23-31. PubMed ID: 24847678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of long DNA sequences using a new synthetic Escherichia coli-yeast shuttle vector.
    Hou Z; Zhou Z; Wang Z; Xiao G
    Virol Sin; 2016 Apr; 31(2):160-7. PubMed ID: 27113243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris.
    Prielhofer R; Barrero JJ; Steuer S; Gassler T; Zahrl R; Baumann K; Sauer M; Mattanovich D; Gasser B; Marx H
    BMC Syst Biol; 2017 Dec; 11(1):123. PubMed ID: 29221460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in
    Li S; Ding W; Zhang X; Jiang H; Bi C
    Biotechnol Biofuels; 2016; 9():232. PubMed ID: 27800017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae.
    Lin Q; Jia B; Mitchell LA; Luo J; Yang K; Zeller KI; Zhang W; Xu Z; Stracquadanio G; Bader JS; Boeke JD; Yuan YJ
    ACS Synth Biol; 2015 Mar; 4(3):213-20. PubMed ID: 24895839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Golden Gate (yGG) for the Efficient Assembly of S. cerevisiae Transcription Units.
    Agmon N; Mitchell LA; Cai Y; Ikushima S; Chuang J; Zheng A; Choi WJ; Martin JA; Caravelli K; Stracquadanio G; Boeke JD
    ACS Synth Biol; 2015 Jul; 4(7):853-9. PubMed ID: 25756291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae.
    Mitchell LA; Chuang J; Agmon N; Khunsriraksakul C; Phillips NA; Cai Y; Truong DM; Veerakumar A; Wang Y; Mayorga M; Blomquist P; Sadda P; Trueheart J; Boeke JD
    Nucleic Acids Res; 2015 Jul; 43(13):6620-30. PubMed ID: 25956652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Yeast Golden Gate and VEGAS for Efficient Assembly of the Violacein Pathway in Saccharomyces cerevisiae.
    Chuang J; Boeke JD; Mitchell LA
    Methods Mol Biol; 2018; 1671():211-225. PubMed ID: 29170962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Utilization of Terminators in the Design of Biologically Adjustable Synthetic Filters.
    Lin MT; Wang CY; Xie HJ; Cheung CH; Hsieh CH; Juan HF; Chen BS; Lin C
    ACS Synth Biol; 2016 May; 5(5):365-74. PubMed ID: 26912179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae.
    Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD
    ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression.
    Ito Y; Terai G; Ishigami M; Hashiba N; Nakamura Y; Bamba T; Kumokita R; Hasunuma T; Asai K; Ishii J; Kondo A
    Nucleic Acids Res; 2020 Dec; 48(22):13000-13012. PubMed ID: 33257988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.