These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27529635)

  • 1. Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines.
    Balmond EI; Tautges BK; Faulkner AL; Or VW; Hodur BM; Shaw JT; Louie AY
    J Org Chem; 2016 Oct; 81(19):8744-8758. PubMed ID: 27529635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.
    Xia H; Xie K; Zou G
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29258220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray, kinetics and DFT studies of photochromic substituted benzothiazolinic spiropyrans.
    Kumar S; Velasco K; McCurdy A
    J Mol Struct; 2010 Apr; 968(1-3):13-18. PubMed ID: 20383273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 triggering and controlling orthogonally multiresponsive photochromic systems.
    Darwish TA; Evans RA; James M; Malic N; Triani G; Hanley TL
    J Am Chem Soc; 2010 Aug; 132(31):10748-55. PubMed ID: 20681707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochromism of spiropyrans and spirooxazines in the solid state: low temperature enhances photocoloration.
    Harada J; Kawazoe Y; Ogawa K
    Chem Commun (Camb); 2010 Apr; 46(15):2593-5. PubMed ID: 20449318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of N-propanoic acid spiropyrans and spirooxazines for use as sensitizing dyes in dye-sensitized solar cells.
    Johnson NM; Smolin YY; Hagaman D; Soroush M; Lau KK; Ji HF
    Phys Chem Chem Phys; 2017 Jan; 19(4):2981-2989. PubMed ID: 28079224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Soluble Spiropyrans with Inverse Photochromism and Their Photoresponsive Electrostatic Self-Assembly.
    Moldenhauer D; Gröhn F
    Chemistry; 2017 Mar; 23(16):3966-3978. PubMed ID: 28042662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring effects of the chain length and terminal substituent on the photochromism of solid-state spiropyrans.
    Deng Y; Zhang L; Zhang C; Gu J; Liu J; Liu H; Xie C; Wu Z
    Org Biomol Chem; 2021 Oct; 19(40):8722-8726. PubMed ID: 34590648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment.
    Pugachev AD; Ozhogin IV; Lukyanova MB; Lukyanov BS; Rostovtseva IA; Dorogan IV; Makarova NI; Tkachev VV; Metelitsa AV; Aldoshin SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118041. PubMed ID: 31955116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties.
    Brieke C; Heckel A
    Chemistry; 2013 Nov; 19(46):15726-34. PubMed ID: 24115210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochromic Heterocycle-Fused Thieno[3,2-b]phosphole Oxides as Visible Light Switches without Sacrificing Photoswitching Efficiency.
    Wu NM; Ng M; Lam WH; Wong HL; Yam VW
    J Am Chem Soc; 2017 Oct; 139(42):15142-15150. PubMed ID: 29027795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Photochromism of Spirooxazine in the Solid State: A New Design Strategy Based on the Hypochromic Effect.
    Zhang T; Lou XY; Li X; Tu X; Han J; Zhao B; Yang YW
    Adv Mater; 2023 Mar; 35(11):e2210551. PubMed ID: 36579725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic variation of thiophene substituents in photochromic spiropyrans.
    Dissanayake DS; McCandless GT; Stefan MC; Biewer MC
    Photochem Photobiol Sci; 2017 Jul; 16(7):1057-1062. PubMed ID: 28509916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New cationic spiropyrans with photoswitchable NIR fluorescence.
    Kozlenko AS; Ozhogin IV; Pugachev AD; Rostovtseva IA; Makarova NI; Demidova NV; Tkachev VV; Borodkin GS; Metelitsa AV; El-Sewify IM; Lukyanov BS
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122712. PubMed ID: 37054564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Triphenylphosphonium Salts of Spiropyrans: Synthesis and Photochromic Properties.
    Khuzin AA; Galimov DI; Khuzina LL; Tukhbatullin AA
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable photochromism of spirooxazines via metal coordination.
    Kopelman RA; Snyder SM; Frank NL
    J Am Chem Soc; 2003 Nov; 125(45):13684-5. PubMed ID: 14599206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state photochromism of chromenes: enhanced photocoloration and observation of unstable colored species at low temperatures.
    Harada J; Ueki K; Anada M; Kawazoe Y; Ogawa K
    Chemistry; 2011 Dec; 17(50):14111-9. PubMed ID: 22068903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron donor and acceptor functionalized dithienylethenes: effects of charge density on photochromic properties.
    Wan H; Xue H; Ling Y; Qiao Y; Chen Y; Zhou G
    Phys Chem Chem Phys; 2018 May; 20(21):14348-14356. PubMed ID: 29766171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indigoid Photoswitches: Visible Light Responsive Molecular Tools.
    Petermayer C; Dube H
    Acc Chem Res; 2018 May; 51(5):1153-1163. PubMed ID: 29694014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochromic, thermochromic, and fluorescent spirooxazines and naphthopyrans: a spectrokinetic and thermodynamic study.
    di Nunzio MR; Gentili PL; Romani A; Favaro G
    Chemphyschem; 2008 Apr; 9(5):768-75. PubMed ID: 18335448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.