These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27529776)

  • 21. Swimming efficiency of spherical squirmers: beyond the Lighthill theory.
    Ishimoto K; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012704. PubMed ID: 25122332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiparticle collision dynamics simulations of a squirmer in a nematic fluid.
    Mandal S; Mazza MG
    Eur Phys J E Soft Matter; 2021 May; 44(5):64. PubMed ID: 33939056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Transport Behavior of a Biflagellated Microswimmer before and after Cargo Loading.
    Teng XJ; Ng WM; Chong WH; Chan DJC; Mohamud R; Ooi BS; Guo C; Liu C; Lim J
    Langmuir; 2021 Aug; 37(30):9192-9201. PubMed ID: 34255525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity.
    Kuhr JT; Rühle F; Stark H
    Soft Matter; 2019 Jul; 15(28):5685-5694. PubMed ID: 31246219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
    Alarcón F; Valeriani C; Pagonabarraga I
    Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct measurement of Lighthill's energetic efficiency of a minimal magnetic microswimmer.
    Calero C; García-Torres J; Ortiz-Ambriz A; Sagués F; Pagonabarraga I; Tierno P
    Nanoscale; 2019 Oct; 11(40):18723-18729. PubMed ID: 31589226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Force calculation on walls and embedded particles in multiparticle-collision-dynamics simulations.
    Imperio A; Padding JT; Briels W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046704. PubMed ID: 21599331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Locomotion of a microorganism in weakly viscoelastic liquids.
    De Corato M; Greco F; Maffettone PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053008. PubMed ID: 26651780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A lattice Boltzmann model for squirmers.
    Kuron M; Stärk P; Burkard C; de Graaf J; Holm C
    J Chem Phys; 2019 Apr; 150(14):144110. PubMed ID: 30981238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase separation and coexistence of hydrodynamically interacting microswimmers.
    Blaschke J; Maurer M; Menon K; Zöttl A; Stark H
    Soft Matter; 2016 Dec; 12(48):9821-9831. PubMed ID: 27869284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the mechanics and hydrodynamics of swimming E. coli.
    Hu J; Yang M; Gompper G; Winkler RG
    Soft Matter; 2015 Oct; 11(40):7867-76. PubMed ID: 26256240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions.
    Ishimoto K
    Phys Rev E; 2017 Oct; 96(4-1):043103. PubMed ID: 29347500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Squirmer hydrodynamics near a periodic surface topography.
    Ishimoto K; Gaffney EA; Smith DJ
    Front Cell Dev Biol; 2023; 11():1123446. PubMed ID: 37123410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study.
    Theers M; Westphal E; Gompper G; Winkler RG
    Phys Rev E; 2016 Mar; 93(3):032604. PubMed ID: 27078411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study.
    Eisenstecken T; Hu J; Winkler RG
    Soft Matter; 2016 Oct; 12(40):8316-8326. PubMed ID: 27714355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Propulsion and energetics of a minimal magnetic microswimmer.
    Calero C; García-Torres J; Ortiz-Ambriz A; Sagués F; Pagonabarraga I; Tierno P
    Soft Matter; 2020 Jul; 16(28):6673-6682. PubMed ID: 32627785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of a chiral swimmer sedimenting on a flat plate.
    Fadda F; Molina JJ; Yamamoto R
    Phys Rev E; 2020 May; 101(5-1):052608. PubMed ID: 32575256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geometric capture and escape of a microswimmer colliding with an obstacle.
    Spagnolie SE; Moreno-Flores GR; Bartolo D; Lauga E
    Soft Matter; 2015 May; 11(17):3396-411. PubMed ID: 25800455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.