BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27529795)

  • 1. Comparative analysis of sigma factors RpoS, FliA, and RpoN in Edwardsiella tarda.
    Song S; Xue Y; Liu E; Wang K; Zhang Y; Wu H; Zhang H
    Can J Microbiol; 2016 Oct; 62(10):861-869. PubMed ID: 27529795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of co-deficiency of RpoN and RpoS on stress tolerance, virulence and gene regulation in Edwardsiella tarda.
    Liu E; Ye J; Song S; Wang K; Zhang Y; Zhang H
    J Basic Microbiol; 2014 Jul; 54(7):678-87. PubMed ID: 24633758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Edwardsiella tarda rpoN: roles in σ(70) family regulation, growth, stress adaption and virulence toward fish.
    Wang K; Liu E; Song S; Wang X; Zhu Y; Ye J; Zhang H
    Arch Microbiol; 2012 Jun; 194(6):493-504. PubMed ID: 22231477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression.
    Xiao J; Wang Q; Liu Q; Xu L; Wang X; Wu H; Zhang Y
    Appl Microbiol Biotechnol; 2009 May; 83(1):151-60. PubMed ID: 19283379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations of flagellar genes fliC12, fliA and flhDC of Edwardsiella tarda attenuated bacterial motility, biofilm formation and virulence to fish.
    Xu T; Su Y; Xu Y; He Y; Wang B; Dong X; Li Y; Zhang XH
    J Appl Microbiol; 2014 Feb; 116(2):236-44. PubMed ID: 24118854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli.
    Dong T; Yu R; Schellhorn H
    Mol Microbiol; 2011 Jan; 79(2):375-86. PubMed ID: 21219458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish.
    Wang Y; Wang Q; Yang W; Liu B; Zhang Y
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3545-57. PubMed ID: 23053108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica.
    Feng L; Bi W; Chen S; Zhu J; Liu X
    Food Microbiol; 2021 Aug; 97():103755. PubMed ID: 33653528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda.
    Lv Y; Xiao J; Liu Q; Wu H; Zhang Y; Wang Q
    Vet Microbiol; 2012 May; 157(1-2):190-9. PubMed ID: 22227416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi.
    Yang XF; Lybecker MC; Pal U; Alani SM; Blevins J; Revel AT; Samuels DS; Norgard MV
    J Bacteriol; 2005 Jul; 187(14):4822-9. PubMed ID: 15995197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The global regulatory effect of Edwardsiella tarda Fur on iron acquisition, stress resistance, and host infection: A proteomics-based interpretation.
    Hu YH; Sun L
    J Proteomics; 2016 May; 140():100-10. PubMed ID: 27102497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutation in rcsB, a gene encoding the core component of the Rcs cascade, enhances the virulence of Edwardsiella tarda.
    Xu Y; Xu T; Wang B; Dong X; Sheng A; Zhang XH
    Res Microbiol; 2014 Apr; 165(3):226-32. PubMed ID: 24631591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of macrophage in response to Edwardsiella tarda-infection.
    Qin L; Li F; Wang X; Sun Y; Bi K; Gao Y
    Microb Pathog; 2017 Oct; 111():86-93. PubMed ID: 28826764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomic analysis reveals new components of the PhoP regulon and highlights a role for PhoP in the regulation of genes encoding the F1F0 ATP synthase in Edwardsiella tarda.
    Lv Y; Yin K; Shao S; Wang Q; Zhang Y
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1340-1351. PubMed ID: 23657683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori.
    Tsang J; Hoover TR
    J Bacteriol; 2015 Jun; 197(11):1921-30. PubMed ID: 25825427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis.
    Rao PS; Yamada Y; Tan YP; Leung KY
    Mol Microbiol; 2004 Jul; 53(2):573-86. PubMed ID: 15228535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FliA expression analysis and influence of the regulatory proteins RpoN, FleQ and FliA on virulence and in vivo fitness in Legionella pneumophila.
    Schulz T; Rydzewski K; Schunder E; Holland G; Bannert N; Heuner K
    Arch Microbiol; 2012 Dec; 194(12):977-89. PubMed ID: 23011748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of RpoS in global gene expression of Escherichia coli in minimal media.
    Dong T; Schellhorn HE
    Mol Genet Genomics; 2009 Jan; 281(1):19-33. PubMed ID: 18843507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi.
    Ouyang Z; Blevins JS; Norgard MV
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2641-2658. PubMed ID: 18757798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of RpoS regulon and RpoS-dependent promoters in Burkholderia pseudomallei.
    Osiriphun Y; Wongtrakoongate P; Sanongkiet S; Suriyaphol P; Thongboonkerd V; Tungpradabkul S
    J Proteome Res; 2009 Jun; 8(6):3118-31. PubMed ID: 19364128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.