These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 27530074)
1. Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation. Pérez JF; Llanos J; Sáez C; López C; Cañizares P; Rodrigo MA J Environ Manage; 2017 Jun; 195(Pt 2):216-223. PubMed ID: 27530074 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical treatment of the effluent of a fine chemical manufacturing plant. Cañizares P; Paz R; Lobato J; Sáez C; Rodrigo MA J Hazard Mater; 2006 Nov; 138(1):173-81. PubMed ID: 16806682 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation: a comparison. Guinea E; Brillas E; Centellas F; Cañizares P; Rodrigo MA; Sáez C Water Res; 2009 May; 43(8):2131-8. PubMed ID: 19282017 [TBL] [Abstract][Full Text] [Related]
4. Treatment of door-manufacturing factories wastewaters using CDEO and other AOPs: a comparison. Beteta A; Cañizares P; Rodrigo MA; Rodríguez L; Sáez C J Hazard Mater; 2009 Aug; 168(1):358-63. PubMed ID: 19285804 [TBL] [Abstract][Full Text] [Related]
5. Advanced oxidation processes for the treatment of olive-oil mills wastewater. Cañizares P; Lobato J; Paz R; Rodrigo MA; Sáez C Chemosphere; 2007 Mar; 67(4):832-8. PubMed ID: 17208280 [TBL] [Abstract][Full Text] [Related]
6. A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins. Cañizares P; Hernández-Ortega M; Rodrigo MA; Barrera-Díaz CE; Roa-Morales G; Sáez C J Hazard Mater; 2009 May; 164(1):120-5. PubMed ID: 18789836 [TBL] [Abstract][Full Text] [Related]
7. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. Cañizares P; Paz R; Sáez C; Rodrigo MA J Environ Manage; 2009 Jan; 90(1):410-20. PubMed ID: 18082930 [TBL] [Abstract][Full Text] [Related]
8. Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. Cañizares P; Beteta A; Sáez C; Rodríguez L; Rodrigo MA Chemosphere; 2008 Jul; 72(7):1080-5. PubMed ID: 18501407 [TBL] [Abstract][Full Text] [Related]
9. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891 [TBL] [Abstract][Full Text] [Related]
10. Three advanced oxidation processes for the treatment of the wastewater from acrylonitrile production. Yan-yang C; Yi Q; Mao-juan B Water Sci Technol; 2009; 60(11):2991-9. PubMed ID: 19934521 [TBL] [Abstract][Full Text] [Related]
11. Degradation of caffeine by conductive diamond electrochemical oxidation. Indermuhle C; Martín de Vidales MJ; Sáez C; Robles J; Cañizares P; García-Reyes JF; Molina-Díaz A; Comninellis C; Rodrigo MA Chemosphere; 2013 Nov; 93(9):1720-5. PubMed ID: 23769468 [TBL] [Abstract][Full Text] [Related]
12. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Sirtori C; Zapata A; Oller I; Gernjak W; Agüera A; Malato S Water Res; 2009 Feb; 43(3):661-8. PubMed ID: 19046757 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Serna-Galvis EA; Silva-Agredo J; Giraldo AL; Flórez-Acosta OA; Torres-Palma RA Sci Total Environ; 2016 Jan; 541():1431-1438. PubMed ID: 26479916 [TBL] [Abstract][Full Text] [Related]
14. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process. Kurt U; Apaydin O; Gonullu MT J Hazard Mater; 2007 May; 143(1-2):33-40. PubMed ID: 17014953 [TBL] [Abstract][Full Text] [Related]
15. Combined chemical treatment of pharmaceutical effluents from medical ointment production. Kulik N; Trapido M; Goi A; Veressinina Y; Munter R Chemosphere; 2008 Feb; 70(8):1525-31. PubMed ID: 17897701 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents. Dos Santos AJ; Costa ECTA; da Silva DR; Garcia-Segura S; Martínez-Huitle CA Environ Sci Pollut Res Int; 2018 Mar; 25(7):7002-7011. PubMed ID: 29273989 [TBL] [Abstract][Full Text] [Related]
17. A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. Moraleda I; Oturan N; Saez C; Llanos J; Rodrigo MA; Oturan MA Chemosphere; 2020 Jan; 238():124854. PubMed ID: 31549676 [TBL] [Abstract][Full Text] [Related]
18. Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Martín de Vidales MJ; Millán M; Sáez C; Pérez JF; Rodrigo MA; Cañizares P Chemosphere; 2015 Oct; 136():281-8. PubMed ID: 26048815 [TBL] [Abstract][Full Text] [Related]
19. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes. de Oliveira IS; Viana L; Verona C; Fallavena VL; Azevedo CM; Pires M J Hazard Mater; 2007 Jul; 146(3):564-8. PubMed ID: 17524557 [TBL] [Abstract][Full Text] [Related]
20. Mineralization of metoprolol by electro-Fenton and photoelectro-Fenton processes. Isarain-Chávez E; Garrido JA; Rodríguez RM; Centellas F; Arias C; Cabot PL; Brillas E J Phys Chem A; 2011 Feb; 115(7):1234-42. PubMed ID: 21288029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]