BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 27530127)

  • 1. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model.
    Tomco M; Petrovova E; Giretova M; Almasiova V; Holovska K; Cigankova V; Jenca A; Jencova J; Jenca A; Boldizar M; Balazs K; Medvecky L
    Anat Sci Int; 2017 Sep; 92(4):569-580. PubMed ID: 27530127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles.
    Fischer EM; Layrolle P; Van Blitterswijk CA; De Bruijn JD
    Tissue Eng; 2003 Dec; 9(6):1179-88. PubMed ID: 14670105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and evaluation of osteoblastic differentiation of human mesenchymal stem cells on novel CaO-SiO2-P2O5-B2O3 glass-ceramics.
    Lee JH; Seo JH; Lee KM; Ryu HS; Baek HR
    Artif Organs; 2013 Jul; 37(7):637-47. PubMed ID: 23560457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osseointegrative properties of electrospun hydroxyapatite-containing nanofibrous chitosan scaffolds.
    Frohbergh ME; Katsman A; Mondrinos MJ; Stabler CT; Hankenson KD; Oristaglio JT; Lelkes PI
    Tissue Eng Part A; 2015 Mar; 21(5-6):970-81. PubMed ID: 25336062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W
    Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation.
    Arinzeh TL; Tran T; Mcalary J; Daculsi G
    Biomaterials; 2005 Jun; 26(17):3631-8. PubMed ID: 15621253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration.
    Li D; Huifang L; Zhao J; Yang Z; Xie X; Wei Z; Li D; Kang P
    Biomed Mater; 2018 Jun; 13(5):055002. PubMed ID: 29775181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W
    Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein.
    Noshi T; Yoshikawa T; Ikeuchi M; Dohi Y; Ohgushi H; Horiuchi K; Sugimura M; Ichijima K; Yonemasu K
    J Biomed Mater Res; 2000 Dec; 52(4):621-30. PubMed ID: 11033544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regenerative medicine in bone tumor surgery].
    Myoui A; Yoshikawa H
    Clin Calcium; 2008 Dec; 18(12):1767-73. PubMed ID: 19043191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo.
    Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton.
    Ohgushi H; Miyake J; Tateishi T
    Novartis Found Symp; 2003; 249():118-27; discussion 127-32, 170-4, 239-41. PubMed ID: 12708653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.