BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27530273)

  • 1. Factors controlling the CO intercalation of h-BN overlayers on Ru(0001).
    Dong A; Fu Q; Wu H; Wei M; Bao X
    Phys Chem Chem Phys; 2016 Sep; 18(35):24278-84. PubMed ID: 27530273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Under-cover stabilization and reactivity of a dense carbon monoxide layer on Pt(111).
    Píš I; Magnano E; Nappini S; Bondino F
    Chem Sci; 2019 Feb; 10(6):1857-1865. PubMed ID: 30842854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions.
    Zhang Y; Weng X; Li H; Li H; Wei M; Xiao J; Liu Z; Chen M; Fu Q; Bao X
    Nano Lett; 2015 May; 15(5):3616-23. PubMed ID: 25897635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Undercoordinated Sites for the Catalysis in Confined Spaces Formed by Two-Dimensional Material Overlayers.
    Zhang L; Ng ML; Vojvodic A
    J Phys Chem Lett; 2020 Nov; 11(21):9400-9407. PubMed ID: 33104328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transformation of h-BN overlayers on Pt(111) in oxidative atmospheres.
    Meng C; Li Y; Wu H; Wei W; Ning Y; Cui Y; Fu Q; Bao X
    Phys Chem Chem Phys; 2018 Apr; 20(16):11013-11020. PubMed ID: 29629720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride.
    Caneva S; Martin MB; D'Arsié L; Aria AI; Sezen H; Amati M; Gregoratti L; Sugime H; Esconjauregui S; Robertson J; Hofmann S; Weatherup RS
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29973-29981. PubMed ID: 28782356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible modification of the structural and electronic properties of a boron nitride monolayer by CO intercalation.
    Ng ML; Shavorskiy A; Rameshan C; Mikkelsen A; Lundgren E; Preobrajenski A; Bluhm H
    Chemphyschem; 2015 Apr; 16(5):923-7. PubMed ID: 25712198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the hexagonal boron nitride nanomesh on Rh(111) with gold.
    Gubó R; Vári G; Kiss J; Farkas AP; Palotás K; Óvári L; Berkó A; Kónya Z
    Phys Chem Chem Phys; 2018 Jun; 20(22):15473-15485. PubMed ID: 29799587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating a Nanospace under an h-BN Cover for Adlayer Growth on Nickel(111).
    Yang Y; Fu Q; Li H; Wei M; Xiao J; Wei W; Bao X
    ACS Nano; 2015 Dec; 9(12):11589-98. PubMed ID: 26446350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry and catalysis confined under two-dimensional materials.
    Fu Q; Bao X
    Chem Soc Rev; 2017 Apr; 46(7):1842-1874. PubMed ID: 27722323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A HR-XPS study of the formation of h-BN on Ni(111) from the two precursors, ammonia borane and borazine.
    Bachmann P; Düll F; Späth F; Bauer U; Steinrück HP; Papp C
    J Chem Phys; 2018 Oct; 149(16):164709. PubMed ID: 30384738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of boron nitride overlayers on Co@BNNSs/BN-Catalyzed aqueous phase selective hydrogenation of cinnamaldehyde.
    Zhang R; Wang L; Ren J; Hu C; Lv B
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):549-558. PubMed ID: 36334490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Oxygen and Hydrogen Functionalization of the h-BN/Rh(111) Nanomesh.
    Marie Freiberger E; Späth F; Bauer U; Düll F; Bachmann P; Steinhauer J; Hemauer F; Waleska NJ; Schwaab V; Steinrück HP; Papp C
    Chemistry; 2021 Sep; 27(52):13172-13180. PubMed ID: 34254706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bromination of 2D materials.
    Freiberger EM; Steffen J; Waleska-Wellnhofer NJ; Hemauer F; Schwaab V; Görling A; Steinrück HP; Papp C
    Nanotechnology; 2024 Jan; 35(14):. PubMed ID: 38048605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001).
    Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ
    J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Route Hydrogenation of the Graphene/Ni Interface.
    Lizzit D; Trioni MI; Bignardi L; Lacovig P; Lizzit S; Martinazzo R; Larciprete R
    ACS Nano; 2019 Feb; 13(2):1828-1838. PubMed ID: 30633501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties.
    Li Q; Liu M; Zhang Y; Liu Z
    Small; 2016 Jan; 12(1):32-50. PubMed ID: 26439677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride.
    Lu J; Gomes LC; Nunes RW; Castro Neto AH; Loh KP
    Nano Lett; 2014 Sep; 14(9):5133-9. PubMed ID: 25083603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Winner Takes It All: Carbon Supersedes Hexagonal Boron Nitride with Graphene on Transition Metals at High Temperatures.
    Hemmi A; Seitsonen AP; Greber T; Cun H
    Small; 2022 Dec; 18(49):e2205184. PubMed ID: 36319466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Catalysis in the g-C
    Wang S; Feng Y; Yu M; Wan Q; Lin S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33267-33273. PubMed ID: 28876886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.