BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 27530301)

  • 21. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prosthetic replacement of the hip in dogs using bioactive bone cement.
    Matsuda Y; Ido K; Nakamura T; Fujita H; Yamamuro T; Oka M; Shibuya T
    Clin Orthop Relat Res; 1997 Mar; (336):263-77. PubMed ID: 9060513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Injectable and self-curing composites of acrylic/bioactive glass and drug systems. A histomorphometric analysis of the behaviour in rabbits.
    González Corchón MA; Salvado M; de la Torre BJ; Collía F; de Pedro JA; Vázquez B; Román JS
    Biomaterials; 2006 Mar; 27(9):1778-87. PubMed ID: 16260032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity.
    Li T; Weng X; Bian Y; Zhou L; Cui F; Qiu Z
    PLoS One; 2015; 10(6):e0129018. PubMed ID: 26039750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.
    Zhang Y; Cui X; Zhao S; Wang H; Rahaman MN; Liu Z; Huang W; Zhang C
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2393-403. PubMed ID: 25591177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo behavior of acrylic bone cement in total hip arthroplasty.
    Ries MD; Young E; Al-Marashi L; Goldstein P; Hetherington A; Petrie T; Pruitt L
    Biomaterials; 2006 Jan; 27(2):256-61. PubMed ID: 16039712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.
    Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R
    Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.
    Verné E; Bruno M; Miola M; Maina G; Bianco C; Cochis A; Rimondini L
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():95-103. PubMed ID: 26042695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical and degradation properties of poly(methyl methacrylate) cement/borate bioactive glass composites.
    Cole KA; Funk GA; Rahaman MN; McIff TE
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2765-2775. PubMed ID: 32170915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study.
    Ni GX; Lu WW; Chiu KY; Li ZY; Fong DY; Luk KD
    J Biomed Mater Res B Appl Biomater; 2006 May; 77(2):409-15. PubMed ID: 16278857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating acrylic and glass-ionomer cement strength using the biaxial flexure test.
    Higg WA; Lucksanasombool P; Higgs RJ; Swain MV
    Biomaterials; 2001 Jun; 22(12):1583-90. PubMed ID: 11374458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous surface modified bioactive bone cement for enhanced bone bonding.
    He Q; Chen H; Huang L; Dong J; Guo D; Mao M; Kong L; Li Y; Wu Z; Lei W
    PLoS One; 2012; 7(8):e42525. PubMed ID: 22905143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.
    Race A; Miller MA; Mann KA
    J Biomech; 2008 Oct; 41(14):3017-23. PubMed ID: 18774136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative measurement of the stresses induced during polymerisation of bone cement.
    Roques A; Browne M; Taylor A; New A; Baker D
    Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model.
    Ni GX; Choy YS; Lu WW; Ngan AH; Chiu KY; Li ZY; Tang B; Luk KD
    Biomaterials; 2006 Mar; 27(9):1963-70. PubMed ID: 16226309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Residual stresses at the stem-cement interface of an idealized cemented hip stem.
    Nuño N; Avanzolini G
    J Biomech; 2002 Jun; 35(6):849-52. PubMed ID: 12021006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone-bonding ability of bioactive bone cement under mechanical stress.
    Mousa WF; Fujita H; Ido K; Neo M; Kobayashi M; Zeineldin IA; Matsushita M; Nakamura T
    J Biomed Mater Res; 1999; 48(5):726-33. PubMed ID: 10490689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.