These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
865 related articles for article (PubMed ID: 27530422)
1. A Copper Porphyrin-Based Conjugated Mesoporous Polymer-Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. Cui S; Qian M; Liu X; Sun Z; Du P ChemSusChem; 2016 Sep; 9(17):2365-73. PubMed ID: 27530422 [TBL] [Abstract][Full Text] [Related]
2. Pyrolyzed cobalt porphyrin-based conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water. Jia H; Yao Y; Gao Y; Lu D; Du P Chem Commun (Camb); 2016 Nov; 52(92):13483-13486. PubMed ID: 27791208 [TBL] [Abstract][Full Text] [Related]
3. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting. Wang H; Cao Y; Sun C; Zou G; Huang J; Kuai X; Zhao J; Gao L ChemSusChem; 2017 Sep; 10(18):3540-3546. PubMed ID: 28758343 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical hydrogen and oxygen evolution reactions from a cobalt-porphyrin-based covalent organic polymer. Wang A; Cheng L; Zhao W; Shen X; Zhu W J Colloid Interface Sci; 2020 Nov; 579():598-606. PubMed ID: 32645527 [TBL] [Abstract][Full Text] [Related]
5. Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions. Sakaushi K; Fellinger TP; Antonietti M ChemSusChem; 2015 Apr; 8(7):1156-60. PubMed ID: 25739370 [TBL] [Abstract][Full Text] [Related]
6. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Hou CC; Fu WF; Chen Y ChemSusChem; 2016 Aug; 9(16):2069-73. PubMed ID: 27440473 [TBL] [Abstract][Full Text] [Related]
7. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation. Masud J; Ioannou PC; Levesanos N; Kyritsis P; Nath M ChemSusChem; 2016 Nov; 9(22):3128-3132. PubMed ID: 27619260 [TBL] [Abstract][Full Text] [Related]
8. Zinc oxide nanoflakes supported copper oxide nanosheets as a bifunctional electrocatalyst for OER and HER in an alkaline medium. Kumar MP; Kumaresan N; Mangalaraja RV; Zaporotskova I; Arulraj A; Murugadoss G; Pugazhendhi A Environ Res; 2024 Jul; 252(Pt 4):119030. PubMed ID: 38677409 [TBL] [Abstract][Full Text] [Related]
9. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Jin H; Wang J; Su D; Wei Z; Pang Z; Wang Y J Am Chem Soc; 2015 Feb; 137(7):2688-94. PubMed ID: 25658518 [TBL] [Abstract][Full Text] [Related]
10. Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. Hou CC; Cao S; Fu WF; Chen Y ACS Appl Mater Interfaces; 2015 Dec; 7(51):28412-9. PubMed ID: 26642257 [TBL] [Abstract][Full Text] [Related]
11. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. Tao Z; Wang T; Wang X; Zheng J; Li X ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855 [TBL] [Abstract][Full Text] [Related]
12. Highly Stable Three-Dimensional Porous Nickel-Iron Nitride Nanosheets for Full Water Splitting at High Current Densities. Yan F; Wang Y; Li K; Zhu C; Gao P; Li C; Zhang X; Chen Y Chemistry; 2017 Jul; 23(42):10187-10194. PubMed ID: 28590063 [TBL] [Abstract][Full Text] [Related]
13. A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting. Inamdar AI; Chavan HS; Hou B; Lee CH; Lee SU; Cha S; Kim H; Im H Small; 2020 Jan; 16(2):e1905884. PubMed ID: 31762207 [TBL] [Abstract][Full Text] [Related]
14. Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene. Wang XL; Tang YJ; Huang W; Liu CH; Dong LZ; Li SL; Lan YQ ChemSusChem; 2017 Jun; 10(11):2402-2407. PubMed ID: 28337857 [TBL] [Abstract][Full Text] [Related]
15. Nanoporous Sulfur-Doped Copper Oxide (Cu Zhang X; Cui X; Sun Y; Qi K; Jin Z; Wei S; Li W; Zhang L; Zheng W ACS Appl Mater Interfaces; 2018 Jan; 10(1):745-752. PubMed ID: 29265797 [TBL] [Abstract][Full Text] [Related]
16. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. Han A; Zhang H; Yuan R; Ji H; Du P ACS Appl Mater Interfaces; 2017 Jan; 9(3):2240-2248. PubMed ID: 28008761 [TBL] [Abstract][Full Text] [Related]
17. Unique hybrid Ni Wang Y; Williams T; Gengenbach T; Kong B; Zhao D; Wang H; Selomulya C Nanoscale; 2017 Nov; 9(44):17349-17356. PubMed ID: 29095460 [TBL] [Abstract][Full Text] [Related]
18. Porous Co Luo X; Zhou Q; Du S; Li J; Zhong J; Deng X; Liu Y ACS Appl Mater Interfaces; 2018 Jul; 10(26):22291-22302. PubMed ID: 29882412 [TBL] [Abstract][Full Text] [Related]
19. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis. Shamloofard M; Shahrokhian S Inorg Chem; 2023 Jan; 62(3):1178-1191. PubMed ID: 36607645 [TBL] [Abstract][Full Text] [Related]
20. Self-Supportive Mesoporous Ni/Co/Fe Phosphosulfide Nanorods Derived from Novel Hydrothermal Electrodeposition as a Highly Efficient Electrocatalyst for Overall Water Splitting. Yao M; Hu H; Sun B; Wang N; Hu W; Komarneni S Small; 2019 Dec; 15(50):e1905201. PubMed ID: 31721424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]