BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27530425)

  • 41. PARP-1 and its associated nucleases in DNA damage response.
    Wang Y; Luo W; Wang Y
    DNA Repair (Amst); 2019 Sep; 81():102651. PubMed ID: 31302005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modulates the induction of DNA strand breaks and poly(ADP-ribose) polymerase-1 activation by 17beta-estradiol in human breast carcinoma cells through alteration of CYP1A1 and CYP1B1 expression.
    Lin PH; Lin CH; Huang CC; Fang JP; Chuang MC
    Chem Res Toxicol; 2008 Jul; 21(7):1337-47. PubMed ID: 18558727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TcPARP: A DNA damage-dependent poly(ADP-ribose) polymerase from Trypanosoma cruzi.
    Fernández Villamil SH; Baltanás R; Alonso GD; Vilchez Larrea SC; Torres HN; Flawiá MM
    Int J Parasitol; 2008 Mar; 38(3-4):277-87. PubMed ID: 17936287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The DNA topoisomerase IIbeta binding protein 1 (TopBP1) interacts with poly (ADP-ribose) polymerase (PARP-1).
    Wollmann Y; Schmidt U; Wieland GD; Zipfel PF; Saluz HP; Hänel F
    J Cell Biochem; 2007 Sep; 102(1):171-82. PubMed ID: 17340632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual regulation of AP-2alpha transcriptional activation by poly(ADP-ribose) polymerase-1.
    Li M; Naidu P; Yu Y; Berger NA; Kannan P
    Biochem J; 2004 Aug; 382(Pt 1):323-9. PubMed ID: 15170387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the Conformational Changes Associated with DNA Binding to PARP1.
    Rudolph J; Mahadevan J; Luger K
    Biochemistry; 2020 Jun; 59(21):2003-2011. PubMed ID: 32357296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations.
    Geraets L; Moonen HJ; Wouters EF; Bast A; Hageman GJ
    Biochem Pharmacol; 2006 Sep; 72(7):902-10. PubMed ID: 16870158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A human poly(ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly(ADP-ribose) polymerase homologues.
    Johansson M
    Genomics; 1999 May; 57(3):442-5. PubMed ID: 10329013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA damage, poly(ADP-Ribose) polymerase activation, and phosphorylated histone H2AX expression during postnatal retina development in C57BL/6 mouse.
    Martín-Oliva D; Martín-Guerrero SM; Matia-González AM; Ferrer-Martín RM; Martín-Estebané M; Carrasco MC; Sierra A; Marín-Teva JL; Calvente R; Navascués J; Cuadros MA
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(2):1301-9. PubMed ID: 25650421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation.
    Pion E; Ullmann GM; Amé JC; Gérard D; de Murcia G; Bombarda E
    Biochemistry; 2005 Nov; 44(44):14670-81. PubMed ID: 16262266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC).
    Prasad R; Horton JK; Wilson SH
    DNA Repair (Amst); 2020 Jun; 90():102850. PubMed ID: 32438305
    [No Abstract]   [Full Text] [Related]  

  • 52. Structure based pharmacophore study to identify possible natural selective PARP-1 trapper as anti-cancer agent.
    Kumar C; P T V L; Arunachalam A
    Comput Biol Chem; 2019 Jun; 80():314-323. PubMed ID: 31078910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PARP-1/PAR Activity in Cultured Human Lens Epithelial Cells Exposed to Two Levels of UVB Light.
    Cencer CS; Chintala SK; Townsend TJ; Feldmann DP; Awrow MA; Putris NA; Geno ME; Donovan MG; Giblin FJ
    Photochem Photobiol; 2018 Jan; 94(1):126-138. PubMed ID: 28756616
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-Particle Assay of Poly(ADP-ribose) Polymerase-1 Activity with Dark-Field Optical Microscopy.
    Zhang D; Wang K; Wei W; Liu S
    ACS Sens; 2020 Apr; 5(4):1198-1206. PubMed ID: 32208631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unraveling the allosteric inhibition mechanism of PARP-1 CAT and the D766/770A mutation effects via Gaussian accelerated molecular dynamics and Markov state model.
    Wang Q; Zhang M; Li A; Yao X; Chen Y
    Comput Biol Med; 2024 Jan; 168():107682. PubMed ID: 38000246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A conserved NAD
    Li J; Bonkowski MS; Moniot S; Zhang D; Hubbard BP; Ling AJ; Rajman LA; Qin B; Lou Z; Gorbunova V; Aravind L; Steegborn C; Sinclair DA
    Science; 2017 Mar; 355(6331):1312-1317. PubMed ID: 28336669
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Imaging: PARP-1 and Beyond.
    Puentes LN; Makvandi M; Mach RH
    J Nucl Med; 2021 Jun; 62(6):765-770. PubMed ID: 33579802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of functional protein domains by unbiased genome-wide forward genetic screening.
    Herzog M; Puddu F; Coates J; Geisler N; Forment JV; Jackson SP
    Sci Rep; 2018 Apr; 8(1):6161. PubMed ID: 29670134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein and Protease Sensing by Allosteric Derepression.
    Goh HC; Ghadessy FJ; Nirantar S
    Methods Mol Biol; 2017; 1596():167-177. PubMed ID: 28293887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Introducing the 3
    J Immunother Precis Oncol; 2020 Feb; 3(1):45. PubMed ID: 35756175
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.