These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1519 related articles for article (PubMed ID: 27530465)
1. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries. Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465 [TBL] [Abstract][Full Text] [Related]
2. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
3. A New CuO-Fe Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612 [TBL] [Abstract][Full Text] [Related]
4. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568 [TBL] [Abstract][Full Text] [Related]
5. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664 [TBL] [Abstract][Full Text] [Related]
6. Unravelling the Structure and Electrochemical Performance of Li-Cr-Mn-O Cathodes: From Spinel to Layered. Li X; Li D; Song D; Shi X; Tang X; Zhang H; Zhang L ACS Appl Mater Interfaces; 2018 Mar; 10(10):8827-8835. PubMed ID: 29470046 [TBL] [Abstract][Full Text] [Related]
7. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
8. Preparation of Layered-Spinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge-Discharge Lithium-Ion Batteries. Luo D; Fang S; Yang L; Hirano SI ChemSusChem; 2017 Dec; 10(24):4845-4850. PubMed ID: 28718226 [TBL] [Abstract][Full Text] [Related]
9. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
10. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499 [TBL] [Abstract][Full Text] [Related]
11. Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. Yu R; Zhang X; Liu T; Yang L; Liu L; Wang Y; Wang X; Shu H; Yang X ACS Appl Mater Interfaces; 2017 Nov; 9(47):41210-41223. PubMed ID: 29115815 [TBL] [Abstract][Full Text] [Related]
12. MnCo Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727 [TBL] [Abstract][Full Text] [Related]
13. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4. Feng X; Yang Z; Tang D; Kong Q; Gu L; Wang Z; Chen L Phys Chem Chem Phys; 2015 Jan; 17(2):1257-64. PubMed ID: 25420544 [TBL] [Abstract][Full Text] [Related]
14. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. Li Q; Li G; Fu C; Luo D; Fan J; Li L ACS Appl Mater Interfaces; 2014 Jul; 6(13):10330-41. PubMed ID: 24971575 [TBL] [Abstract][Full Text] [Related]
15. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries. Luo D; Fang S; Tamiya Y; Yang L; Hirano S Small; 2016 Aug; 12(32):4421-30. PubMed ID: 27389965 [TBL] [Abstract][Full Text] [Related]
16. Heavy Fluorination via Ion Exchange Achieves High-Performance Li-Mn-O-F Layered Cathode for Li-Ion Batteries. Lu J; Cao B; Hu B; Liao Y; Qi R; Liu J; Zuo C; Xu S; Li Z; Chen C; Zhang M; Pan F Small; 2022 Feb; 18(6):e2103499. PubMed ID: 34850552 [TBL] [Abstract][Full Text] [Related]
17. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries. Noh HJ; Ju JW; Sun YK ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348 [TBL] [Abstract][Full Text] [Related]
18. Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries. Zhao T; Zhou N; Zhang X; Xue Q; Wang Y; Yang M; Li L; Chen R ACS Omega; 2017 Sep; 2(9):5601-5610. PubMed ID: 31457825 [TBL] [Abstract][Full Text] [Related]
19. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping. Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001 [TBL] [Abstract][Full Text] [Related]
20. AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. Sun S; Yin Y; Wan N; Wu Q; Zhang X; Pan D; Bai Y; Lu X ChemSusChem; 2015 Aug; 8(15):2544-50. PubMed ID: 26105748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]