These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27530554)

  • 21. Environmental Fate and Dissipation of Applied dsRNA in Soil, Aquatic Systems, and Plants.
    Bachman P; Fischer J; Song Z; Urbanczyk-Wochniak E; Watson G
    Front Plant Sci; 2020; 11():21. PubMed ID: 32117368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment.
    Wang F; Gao J; Zhai W; Cui J; Liu D; Zhou Z; Wang P
    Ecotoxicol Environ Saf; 2021 Jan; 208():111717. PubMed ID: 33396048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental fate of pharmaceuticals in water/sediment systems.
    Löffler D; Römbke J; Meller M; Ternes TA
    Environ Sci Technol; 2005 Jul; 39(14):5209-18. PubMed ID: 16082949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fate of the
    Braun KE; Luks AK; Schmidt B
    J Environ Sci Health B; 2017 Feb; 52(2):122-130. PubMed ID: 27820683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test.
    Radke M; Lauwigi C; Heinkele G; Mürdter TE; Letzel M
    Environ Sci Technol; 2009 May; 43(9):3135-41. PubMed ID: 19534125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.
    Bradley PM; Battaglin WA; Iwanowicz LR; Clark JM; Journey CA
    Environ Toxicol Chem; 2016 May; 35(5):1087-96. PubMed ID: 26588039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.
    Barhoumi B; Clérandeau C; Landi L; Pichon A; Le Bihanic F; Poirier D; Anschutz P; Budzinski H; Driss MR; Cachot J
    Environ Toxicol Chem; 2016 Sep; 35(9):2270-80. PubMed ID: 26823140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain.
    Sun C; Ma Q; Zhang J; Zhou M; Chen Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16661-70. PubMed ID: 27180837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of Fluxapyroxad in Soils and Water/Sediment Systems Under Aerobic or Anaerobic Conditions.
    Li S; Liu X; Chen C; Dong F; Xu J; Zheng Y
    Bull Environ Contam Toxicol; 2015 Jul; 95(1):45-50. PubMed ID: 25935333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of RNA Interference (RNAi) Biopesticides: Double-Stranded RNA (dsRNA) Extraction from Agricultural Soils and Quantification by RT-qPCR.
    Zhang K; Wei J; Huff Hartz KE; Lydy MJ; Moon TS; Sander M; Parker KM
    Environ Sci Technol; 2020 Apr; 54(8):4893-4902. PubMed ID: 32212649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms.
    Liu T; Diao J; Di S; Zhou Z
    Chemosphere; 2015 Apr; 124():77-82. PubMed ID: 25475969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissipation of glyphosate and aminomethylphosphonic acid in water and sediment of two Canadian prairie wetlands.
    Degenhardt D; Humphries D; Cessna AJ; Messing P; Badiou PH; Raina R; Farenhorst A; Pennock DJ
    J Environ Sci Health B; 2012; 47(7):631-9. PubMed ID: 22560025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of rizazole in water-sediment systems.
    Zhang C; Zhao H; Ping L; Cai X; Wu M; He H; Zhang C; Zhu Y; Li Z
    J Environ Sci Health B; 2013; 48(5):319-23. PubMed ID: 23431969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavior of di(2-ethylhexyl) phthalate discharged from domestic waste water into aquatic environment.
    Yuwatini E; Hata N; Taguchi S
    J Environ Monit; 2006 Jan; 8(1):191-6. PubMed ID: 16395478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The aquatic fate of triclopyr in whole-pond treatments.
    Petty DG; Skogerboe JG; Getsinger KD; Foster DR; Houtman BA; Fairchild JF; Anderson LW
    Pest Manag Sci; 2001 Sep; 57(9):764-75. PubMed ID: 11561400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W; Song L; Peng L; Wan N; Zhang X; Gan N
    Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors affecting the dissipation of pharmaceuticals in freshwater sediments.
    Al-Khazrajy OSA; Bergström E; Boxall ABA
    Environ Toxicol Chem; 2018 Mar; 37(3):829-838. PubMed ID: 29068472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate of weathered multi-walled carbon nanotubes in an aquatic sediment system.
    Politowski I; Regnery P; Hennig MP; Siebers N; Ottermanns R; Schäffer A
    Chemosphere; 2021 Aug; 277():130319. PubMed ID: 34384182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.