These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27530612)

  • 41. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug-target interactions and analysis of biological processes.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Chem Res Toxicol; 2014 Jul; 27(7):1263-81. PubMed ID: 24920530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PPIevo: protein-protein interaction prediction from PSSM based evolutionary information.
    Zahiri J; Yaghoubi O; Mohammad-Noori M; Ebrahimpour R; Masoudi-Nejad A
    Genomics; 2013 Oct; 102(4):237-42. PubMed ID: 23747746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis.
    Mou T; Zhu D; Wei X; Li T; Zheng D; Pu J; Guo Z; Wu Z
    World J Surg Oncol; 2017 Mar; 15(1):63. PubMed ID: 28302149
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of protein-protein interaction associated functions based on gene ontology and KEGG pathway.
    Yang L; Zhang YH; Huang F; Li Z; Huang T; Cai YD
    Front Genet; 2022; 13():1011659. PubMed ID: 36171880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes.
    Chen J; Li C; Zhu Y; Sun L; Sun H; Liu Y; Zhang Z; Wang C
    Hematology; 2015 Jul; 20(6):336-42. PubMed ID: 25343280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of metabolic pathway using hybrid properties.
    Chen L; Cai YD; Shi XH; Huang T
    Protein Pept Lett; 2012 Jan; 19(1):99-107. PubMed ID: 21919854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of interactions between viral and host proteins using supervised machine learning methods.
    Barman RK; Saha S; Das S
    PLoS One; 2014; 9(11):e112034. PubMed ID: 25375323
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ontological visualization of protein-protein interactions.
    Drabkin HJ; Hollenbeck C; Hill DP; Blake JA
    BMC Bioinformatics; 2005 Feb; 6():29. PubMed ID: 15707487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of New Candidate Genes and Chemicals Related to Esophageal Cancer Using a Hybrid Interaction Network of Chemicals and Proteins.
    Gao YF; Yuan F; Liu J; Li LP; He YC; Gao RJ; Cai YD; Jiang Y
    PLoS One; 2015; 10(6):e0129474. PubMed ID: 26058041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PathPPI: an integrated dataset of human pathways and protein-protein interactions.
    Tang H; Zhong F; Liu W; He F; Xie H
    Sci China Life Sci; 2015 Jun; 58(6):579-89. PubMed ID: 25591449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Homopharma: a new concept for exploring the molecular binding mechanisms and drug repurposing.
    Chiu YY; Tseng JH; Liu KH; Lin CT; Hsu KC; Yang JM
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S8. PubMed ID: 25521038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction and analysis of protein palmitoylation sites.
    Hu LL; Wan SB; Niu S; Shi XH; Li HP; Cai YD; Chou KC
    Biochimie; 2011 Mar; 93(3):489-96. PubMed ID: 21075167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating the significance of protein functional similarity based on gene ontology.
    Konopka BM; Golda T; Kotulska M
    J Comput Biol; 2014 Nov; 21(11):809-22. PubMed ID: 25188814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SVM-RFE with MRMR filter for gene selection.
    Mundra PA; Rajapakse JC
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):31-7. PubMed ID: 19884101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Ɓukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target identification of bioactive compounds.
    Tashiro E; Imoto M
    Bioorg Med Chem; 2012 Mar; 20(6):1910-21. PubMed ID: 22104438
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational Method for the Identification of Molecular Metabolites Involved in Cereal Hull Color Variations.
    Zhang Y; Dong D; Li D; Lu L; Li J; Zhang Y; Chen L
    Comb Chem High Throughput Screen; 2018; 21(10):760-770. PubMed ID: 30698111
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RBRIdent: An algorithm for improved identification of RNA-binding residues in proteins from primary sequences.
    Xiong D; Zeng J; Gong H
    Proteins; 2015 Jun; 83(6):1068-77. PubMed ID: 25846271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.