These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 27530680)
1. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sasano Y; Nagasawa K; Kaboli S; Sugiyama M; Harashima S Sci Rep; 2016 Aug; 6():30278. PubMed ID: 27530680 [TBL] [Abstract][Full Text] [Related]
2. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Reider Apel A; d'Espaux L; Wehrs M; Sachs D; Li RA; Tong GJ; Garber M; Nnadi O; Zhuang W; Hillson NJ; Keasling JD; Mukhopadhyay A Nucleic Acids Res; 2017 Jan; 45(1):496-508. PubMed ID: 27899650 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. Easmin F; Sasano Y; Kimura S; Hassan N; Ekino K; Taguchi H; Harashima S J Biosci Bioeng; 2020 Feb; 129(2):129-139. PubMed ID: 31585858 [TBL] [Abstract][Full Text] [Related]
4. Precision genome editing in the CRISPR era. Salsman J; Dellaire G Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771 [TBL] [Abstract][Full Text] [Related]
5. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. Finnigan GC; Thorner J G3 (Bethesda); 2016 Jul; 6(7):2147-56. PubMed ID: 27185399 [TBL] [Abstract][Full Text] [Related]
6. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Albadri S; Del Bene F; Revenu C Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641 [TBL] [Abstract][Full Text] [Related]
7. Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of Xie ZX; Mitchell LA; Liu HM; Li BZ; Liu D; Agmon N; Wu Y; Li X; Zhou X; Li B; Xiao WH; Ding MZ; Wang Y; Yuan YJ; Boeke JD G3 (Bethesda); 2018 Jan; 8(1):173-183. PubMed ID: 29150593 [TBL] [Abstract][Full Text] [Related]
8. [CRISPR/CAS9, the King of Genome Editing Tools]. Bannikov AV; Lavrov AV Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076 [TBL] [Abstract][Full Text] [Related]
9. CRISPR Mediated Genome Engineering and its Application in Industry. Kaboli S; Babazada H Curr Issues Mol Biol; 2018; 26():81-92. PubMed ID: 28879858 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Bothmer A; Phadke T; Barrera LA; Margulies CM; Lee CS; Buquicchio F; Moss S; Abdulkerim HS; Selleck W; Jayaram H; Myer VE; Cotta-Ramusino C Nat Commun; 2017 Jan; 8():13905. PubMed ID: 28067217 [TBL] [Abstract][Full Text] [Related]
11. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040 [TBL] [Abstract][Full Text] [Related]
12. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines. Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832 [TBL] [Abstract][Full Text] [Related]
13. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727 [TBL] [Abstract][Full Text] [Related]
14. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770 [TBL] [Abstract][Full Text] [Related]
15. The discovery and development of the CRISPR system in applications in genome manipulation. Lau V; Davie JR Biochem Cell Biol; 2017 Apr; 95(2):203-210. PubMed ID: 28103055 [TBL] [Abstract][Full Text] [Related]
16. Engineering the Delivery System for CRISPR-Based Genome Editing. Glass Z; Lee M; Li Y; Xu Q Trends Biotechnol; 2018 Feb; 36(2):173-185. PubMed ID: 29305085 [TBL] [Abstract][Full Text] [Related]
17. Gene editing in mouse zygotes using the CRISPR/Cas9 system. Wefers B; Bashir S; Rossius J; Wurst W; Kühn R Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Cas9 system-driven site-specific selection pressure on Herpes simplex virus genomes. Li Z; Bi Y; Xiao H; Sun L; Ren Y; Li Y; Chen C; Cun W Virus Res; 2018 Jan; 244():286-295. PubMed ID: 28279800 [TBL] [Abstract][Full Text] [Related]
19. An Era of CRISPR/ Cas9 Mediated Plant Genome Editing. Khurshid H; Jan SA; Shinwari ZK; Jamal M; Shah SH Curr Issues Mol Biol; 2018; 26():47-54. PubMed ID: 28879855 [TBL] [Abstract][Full Text] [Related]
20. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]