BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27530691)

  • 1. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.
    Willrodt C; Halan B; Karthaus L; Rehdorf J; Julsing MK; Buehler K; Schmid A
    Biotechnol Bioeng; 2017 Feb; 114(2):281-290. PubMed ID: 27530691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor.
    Mars AE; Gorissen JP; van den Beld I; Eggink G
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):101-7. PubMed ID: 11499915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL.
    Cornelissen S; Julsing MK; Volmer J; Riechert O; Schmid A; Bühler B
    Biotechnol Bioeng; 2013 May; 110(5):1282-92. PubMed ID: 23239244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica.
    Ferrara MA; Almeida DS; Siani AC; Lucchetti L; Lacerda PS; Freitas A; Tappin MR; Bon EP
    Braz J Microbiol; 2013 Dec; 44(4):1075-80. PubMed ID: 24688495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C-H-oxyfunctionalization.
    Cornelissen S; Liu S; Deshmukh AT; Schmid A; Bühler B
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1359-70. PubMed ID: 21559976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.
    Karande R; Debor L; Salamanca D; Bogdahn F; Engesser KH; Buehler K; Schmid A
    Biotechnol Bioeng; 2016 Jan; 113(1):52-61. PubMed ID: 26153144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation.
    Willrodt C; Hoschek A; Bühler B; Schmid A; Julsing MK
    Biotechnol Bioeng; 2015 Sep; 112(9):1738-50. PubMed ID: 25786991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.
    Mi J; Schewe H; Buchhaupt M; Holtmann D; Schrader J
    World J Microbiol Biotechnol; 2016 Jul; 32(7):112. PubMed ID: 27263007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida.
    van Beilen JB; Holtackers R; Lüscher D; Bauer U; Witholt B; Duetz WA
    Appl Environ Microbiol; 2005 Apr; 71(4):1737-44. PubMed ID: 15811996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of alpha-terpineol by Pseudomonas incognita.
    Madyastha KM; Renganathan V
    Can J Microbiol; 1984 Dec; 30(12):1429-36. PubMed ID: 6525582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of protein prenylation by metabolites of limonene.
    Hardcastle IR; Rowlands MG; Barber AM; Grimshaw RM; Mohan MK; Nutley BP; Jarman M
    Biochem Pharmacol; 1999 Apr; 57(7):801-9. PubMed ID: 10075086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacokinetics of perillic acid in humans after a single dose administration of a citrus preparation rich in d-limonene content.
    Chow HH; Salazar D; Hakim IA
    Cancer Epidemiol Biomarkers Prev; 2002 Nov; 11(11):1472-6. PubMed ID: 12433729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of monoterpene biotransformation in two pseudomonads.
    Bicas JL; Fontanille P; Pastore GM; Larroche C
    J Appl Microbiol; 2008 Dec; 105(6):1991-2001. PubMed ID: 19120646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth.
    Crowell PL; Lin S; Vedejs E; Gould MN
    Cancer Chemother Pharmacol; 1992; 31(3):205-12. PubMed ID: 1464157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production.
    Willrodt C; Hoschek A; Bühler B; Schmid A; Julsing MK
    Biotechnol Bioeng; 2016 Jun; 113(6):1305-14. PubMed ID: 26574166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors.
    Karande R; Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2014 Sep; 111(9):1831-40. PubMed ID: 24729096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tricistronic overexpression of cytochrome P450cam, putidaredoxin, and putidaredoxin reductase provides a useful cell-based catalytic system.
    Kim D; Ortiz de Montellano PR
    Biotechnol Lett; 2009 Sep; 31(9):1427-31. PubMed ID: 19458919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale.
    Halan B; Letzel T; Schmid A; Buehler K
    Biotechnol J; 2014 Oct; 9(10):1339-49. PubMed ID: 25111808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis.
    Gross R; Lang K; Bühler K; Schmid A
    Biotechnol Bioeng; 2010 Mar; 105(4):705-17. PubMed ID: 19845014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.