These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 27530819)
1. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots. Teranishi K; Masayasu N; Masuda D J Agric Food Chem; 2016 Sep; 64(35):6745-51. PubMed ID: 27530819 [TBL] [Abstract][Full Text] [Related]
2. Structure of a Precursor to the Blue Components Produced in the Blue Discoloration in Japanese Radish (Raphanus sativus) Roots. Teranishi K; Masayasu N J Nat Prod; 2016 May; 79(5):1381-7. PubMed ID: 27128155 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage. Zhang Y; Zhao X; Ma Y; Zhang L; Jiang Y; Liang H; Wang D Food Chem; 2021 Nov; 362():130076. PubMed ID: 34090048 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory mechanism of low-oxygen-storage treatment in postharvest internal bluing of radish (Raphanus sativus) roots. Zhao X; Zhang Y; Ma Y; Zhang L; Jiang Y; Liang H; Wang D Food Chem; 2021 Dec; 364():130423. PubMed ID: 34198034 [TBL] [Abstract][Full Text] [Related]
5. The Disturbance of the Antioxidant System Results in Internal Blue Discoloration of Postharvest Cherry Radish ( Wang X; Liu Y; Zhao W; Wang P; Zhao S; Zhao X; Wang D Foods; 2023 Feb; 12(3):. PubMed ID: 36766205 [TBL] [Abstract][Full Text] [Related]
6. Prediction and suppression of internal blue discoloration in roots of daikon, the Japanese radish ( Teranishi K; Nagata M Food Sci Nutr; 2018 Nov; 6(8):2134-2140. PubMed ID: 30510714 [TBL] [Abstract][Full Text] [Related]
7. The primary active components, antioxidant properties, and differential metabolite profiles of radish sprouts (Raphanus sativus L.) upon domestic storage: analysis of nutritional quality. Li R; Zhu Y J Sci Food Agric; 2018 Dec; 98(15):5853-5860. PubMed ID: 29786832 [TBL] [Abstract][Full Text] [Related]
8. Effects of heat stress on the biological Maillard reaction, oxidative stress, and occurrence of internal browning in Japanese radish (Raphanus sativus L.). Fukuoka N; Hamada T J Plant Physiol; 2021 Jan; 256():153326. PubMed ID: 33310528 [TBL] [Abstract][Full Text] [Related]
9. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources. Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes. Schäfer J; Brett A; Trierweiler B; Bunzel M J Agric Food Chem; 2016 Nov; 64(45):8625-8632. PubMed ID: 27744693 [TBL] [Abstract][Full Text] [Related]
11. Comparison of blue discoloration in radish root among different varieties and blue pigment stability analysis. Zhang Y; Zhao X; Ma Y; Jiang Y; Wang D; Liang H Food Chem; 2021 Mar; 340():128164. PubMed ID: 33011470 [TBL] [Abstract][Full Text] [Related]
12. Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. Hanlon PR; Barnes DM J Food Sci; 2011; 76(1):C185-92. PubMed ID: 21535648 [TBL] [Abstract][Full Text] [Related]
13. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors ( Zhang J; Qiu X; Tan Q; Xiao Q; Mei S J Agric Food Chem; 2020 Dec; 68(49):14463-14470. PubMed ID: 33216541 [TBL] [Abstract][Full Text] [Related]
14. Effects of U on the growth, reactive oxygen metabolism and osmotic regulation in radish (Raphanus sativus L.). Wu G; Chen X; Zheng T; Xiao PX; Zhong NY; Yang XL; Li Y; Li W Environ Sci Pollut Res Int; 2022 Aug; 29(36):55081-55091. PubMed ID: 35312915 [TBL] [Abstract][Full Text] [Related]
15. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus). Dočekalová H; Škarpa P; Dočekal B Talanta; 2015 Mar; 134():153-157. PubMed ID: 25618652 [TBL] [Abstract][Full Text] [Related]
16. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). Ishida M; Kakizaki T; Morimitsu Y; Ohara T; Hatakeyama K; Yoshiaki H; Kohori J; Nishio T Theor Appl Genet; 2015 Oct; 128(10):2037-46. PubMed ID: 26152572 [TBL] [Abstract][Full Text] [Related]
17. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
18. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil. Zheng RL; Li HF; Jiang RF; Zhang FS Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549 [TBL] [Abstract][Full Text] [Related]
19. Effect of copper on pro- and antioxidative reactions in radish (Raphanus sativus L.) in vitro and in vivo. Lukatkin A; Egorova I; Michailova I; Malec P; Strzałka K J Trace Elem Med Biol; 2014 Jan; 28(1):80-6. PubMed ID: 24315386 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest. Lee JG; Lim S; Kim J; Lee EJ Food Chem; 2017 Oct; 233():60-68. PubMed ID: 28530612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]