These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 27530913)
1. Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia. Wood CM; de Souza Netto JG; Wilson JM; Duarte RM; Val AL J Comp Physiol B; 2017 Jan; 187(1):135-151. PubMed ID: 27530913 [TBL] [Abstract][Full Text] [Related]
2. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0. Wood CM; Gonzalez RJ; Ferreira MS; Braz-Mota S; Val AL J Comp Physiol B; 2018 May; 188(3):393-408. PubMed ID: 29189935 [TBL] [Abstract][Full Text] [Related]
3. The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. Wilkie MP; Pamenter ME; Duquette S; Dhiyebi H; Sangha N; Skelton G; Smith MD; Buck LT J Exp Biol; 2011 Dec; 214(Pt 24):4107-20. PubMed ID: 22116753 [TBL] [Abstract][Full Text] [Related]
4. Physiological and molecular responses of the spiny dogfish shark (Squalus acanthias) to high environmental ammonia: scavenging for nitrogen. Nawata CM; Walsh PJ; Wood CM J Exp Biol; 2015 Jan; 218(Pt 2):238-48. PubMed ID: 25609784 [TBL] [Abstract][Full Text] [Related]
5. Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. Kajimura M; Croke SJ; Glover CN; Wood CM J Exp Biol; 2004 May; 207(Pt 12):1993-2002. PubMed ID: 15143133 [TBL] [Abstract][Full Text] [Related]
6. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Liew HJ; Sinha AK; Nawata CM; Blust R; Wood CM; De Boeck G Aquat Toxicol; 2013 Jan; 126():63-76. PubMed ID: 23143040 [TBL] [Abstract][Full Text] [Related]
7. Differential Effects of Temperature on Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the Dogfish Shark (Squalus acanthias suckleyi). Giacomin M; Schulte PM; Wood CM Physiol Biochem Zool; 2017; 90(6):627-637. PubMed ID: 28972451 [TBL] [Abstract][Full Text] [Related]
8. Physiological impacts and bioaccumulation of dietary Cu and Cd in a model teleost: The Amazonian tambaqui (Colossoma macropomum). Giacomin M; Vilarinho GC; Castro KF; Ferreira M; Duarte RM; Wood CM; Val AL Aquat Toxicol; 2018 Jun; 199():30-45. PubMed ID: 29604500 [TBL] [Abstract][Full Text] [Related]
9. The consequences of reversible gill remodelling on ammonia excretion in goldfish (Carassius auratus). Perry SF; Schwaiger T; Kumai Y; Tzaneva V; Braun MH J Exp Biol; 2010 Nov; 213(Pt 21):3656-65. PubMed ID: 20952613 [TBL] [Abstract][Full Text] [Related]
10. Adaptations of a deep sea scavenger: high ammonia tolerance and active NH₄⁺ excretion by the Pacific hagfish (Eptatretus stoutii). Clifford AM; Goss GG; Wilkie MP Comp Biochem Physiol A Mol Integr Physiol; 2015 Apr; 182():64-74. PubMed ID: 25499242 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias). Nawata CM; Walsh PJ; Wood CM J Comp Physiol B; 2015 Jul; 185(5):511-25. PubMed ID: 25794843 [TBL] [Abstract][Full Text] [Related]
12. Branchial and extra-branchial ammonia excretion in goldfish (Carassius auratus) following thermally induced gill remodeling. Smith AA; Zimmer AM; Wood CM Comp Biochem Physiol A Mol Integr Physiol; 2012 Jul; 162(3):185-92. PubMed ID: 22387290 [TBL] [Abstract][Full Text] [Related]
13. Physiological insights into largemouth bass (Micropterus salmoides) survival during long-term exposure to high environmental ammonia. Egnew N; Renukdas N; Ramena Y; Yadav AK; Kelly AM; Lochmann RT; Sinha AK Aquat Toxicol; 2019 Feb; 207():72-82. PubMed ID: 30530206 [TBL] [Abstract][Full Text] [Related]
14. Feeding through your gills and turning a toxicant into a resource: how the dogfish shark scavenges ammonia from its environment. Wood CM; Giacomin M J Exp Biol; 2016 Oct; 219(Pt 20):3218-3226. PubMed ID: 27802150 [TBL] [Abstract][Full Text] [Related]
15. Compensatory responses in common carp (Cyprinus carpio) under ammonia exposure: additional effects of feeding and exercise. Diricx M; Sinha AK; Liew HJ; Mauro N; Blust R; De Boeck G Aquat Toxicol; 2013 Oct; 142-143():123-37. PubMed ID: 24001429 [TBL] [Abstract][Full Text] [Related]
16. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Martin M; Fehsenfeld S; Sourial MM; Weihrauch D Comp Biochem Physiol A Mol Integr Physiol; 2011 Oct; 160(2):267-77. PubMed ID: 21723408 [TBL] [Abstract][Full Text] [Related]
17. The Effects of Acute Copper and Ammonia Challenges on Ammonia and Urea Excretion by the Blue Crab Callinectes sapidus. Zimmer AM; Jorge MB; Wood CM; Martins CM; Bianchini A Arch Environ Contam Toxicol; 2017 Apr; 72(3):461-470. PubMed ID: 28260151 [TBL] [Abstract][Full Text] [Related]
18. Strategies for surviving high concentrations of environmental ammonia in the swamp eel Monopterus albus. Ip YK; Tay AS; Lee KH; Chew SF Physiol Biochem Zool; 2004; 77(3):390-405. PubMed ID: 15286913 [TBL] [Abstract][Full Text] [Related]
19. An in vitro analysis of intestinal ammonia handling in fasted and fed freshwater rainbow trout (Oncorhynchus mykiss). Rubino JG; Zimmer AM; Wood CM J Comp Physiol B; 2014 Jan; 184(1):91-105. PubMed ID: 24043214 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure. Frick NT; Wright PA J Exp Biol; 2002 Jan; 205(Pt 1):91-100. PubMed ID: 11818415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]