These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27530989)

  • 1. Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: a translational functional imaging model.
    Gopinath K; Maltbie E; Urushino N; Kempf D; Howell L
    Psychopharmacology (Berl); 2016 Oct; 233(21-22):3673-3684. PubMed ID: 27530989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketamine-induced brain activation in awake female nonhuman primates: a translational functional imaging model.
    Maltbie E; Gopinath K; Urushino N; Kempf D; Howell L
    Psychopharmacology (Berl); 2016 Mar; 233(6):961-72. PubMed ID: 26660447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network.
    Mueller F; Musso F; London M; de Boer P; Zacharias N; Winterer G
    Neuroimage Clin; 2018; 19():745-757. PubMed ID: 30003027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the central effects of (±)-ketamine and traxoprodil using pharmacological magnetic resonance imaging in awake rats.
    Tang H; Kukral D; Li YW; Fronheiser M; Malone H; Pena A; Pieschl R; Sidik K; Tobon G; Chow PL; Bristow LJ; Hayes W; Luo F
    J Psychopharmacol; 2018 Feb; 32(2):146-155. PubMed ID: 29378483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the attenuation of the ketamine pharmacological magnetic resonance imaging response in humans: a validation using antipsychotic and glutamatergic agents.
    Doyle OM; De Simoni S; Schwarz AJ; Brittain C; O'Daly OG; Williams SC; Mehta MA
    J Pharmacol Exp Ther; 2013 Apr; 345(1):151-60. PubMed ID: 23370794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects of clozapine, risperidone, and olanzapine on ketamine-induced alterations in regional brain metabolism.
    Duncan GE; Miyamoto S; Leipzig JN; Lieberman JA
    J Pharmacol Exp Ther; 2000 Apr; 293(1):8-14. PubMed ID: 10734147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects.
    Shcherbinin S; Doyle O; Zelaya FO; de Simoni S; Mehta MA; Schwarz AJ
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4191-204. PubMed ID: 26223493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Default mode network connectivity change corresponds to ketamine's delayed glutamatergic effects.
    Li M; Woelfer M; Colic L; Safron A; Chang C; Heinze HJ; Speck O; Mayberg HS; Biswal BB; Salvadore G; Fejtova A; Walter M
    Eur Arch Psychiatry Clin Neurosci; 2020 Mar; 270(2):207-216. PubMed ID: 30353262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ketamine and pharmacological imaging: use of functional magnetic resonance imaging to evaluate mechanisms of action.
    Maltbie EA; Kaundinya GS; Howell LL
    Behav Pharmacol; 2017 Dec; 28(8):610-622. PubMed ID: 29049083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.
    Joules R; Doyle OM; Schwarz AJ; O'Daly OG; Brammer M; Williams SC; Mehta MA
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4205-18. PubMed ID: 25980482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ketamine treatment on cocaine-induced reinstatement and disruption of functional connectivity in unanesthetized rhesus monkeys.
    Maltbie EA; Gopinath KS; Howell LL
    Psychopharmacology (Berl); 2019 Jul; 236(7):2105-2118. PubMed ID: 30879118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptor antagonists traxoprodil and lanicemine improve hippocampal-prefrontal coupling and reward-related networks in rats.
    Becker R; Gass N; Kußmaul L; Schmid B; Scheuerer S; Schnell D; Dorner-Ciossek C; Weber-Fahr W; Sartorius A
    Psychopharmacology (Berl); 2019 Dec; 236(12):3451-3463. PubMed ID: 31267156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The affinity of antipsychotic drugs to dopamine and serotonin 5-HT
    Tollens F; Gass N; Becker R; Schwarz AJ; Risterucci C; Künnecke B; Lebhardt P; Reinwald J; Sack M; Weber-Fahr W; Meyer-Lindenberg A; Sartorius A
    Eur Neuropsychopharmacol; 2018 Sep; 28(9):1035-1046. PubMed ID: 30006253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys.
    Adams BW; Bradberry CW; Moghaddam B
    Synapse; 2002 Jan; 43(1):12-8. PubMed ID: 11746729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: A double-blind, placebo-controlled, randomized, longitudinal resting fMRI study.
    Chen MH; Lin WC; Tu PC; Li CT; Bai YM; Tsai SJ; Su TP
    J Affect Disord; 2019 Dec; 259():15-20. PubMed ID: 31437695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms.
    Fleming LM; Javitt DC; Carter CS; Kantrowitz JT; Girgis RR; Kegeles LS; Ragland JD; Maddock RJ; Lesh TA; Tanase C; Robinson J; Potter WZ; Carlson M; Wall MM; Choo TH; Grinband J; Lieberman J; Krystal JH; Corlett PR
    Neuroimage Clin; 2019; 22():101739. PubMed ID: 30852397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ketamine on brain function during smooth pursuit eye movements.
    Steffens M; Becker B; Neumann C; Kasparbauer AM; Meyhöfer I; Weber B; Mehta MA; Hurlemann R; Ettinger U
    Hum Brain Mapp; 2016 Nov; 37(11):4047-4060. PubMed ID: 27342447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Awake rat pharmacological magnetic resonance imaging as a translational pharmacodynamic biomarker: metabotropic glutamate 2/3 agonist modulation of ketamine-induced blood oxygenation level dependence signals.
    Chin CL; Upadhyay J; Marek GJ; Baker SJ; Zhang M; Mezler M; Fox GB; Day M
    J Pharmacol Exp Ther; 2011 Mar; 336(3):709-15. PubMed ID: 21172908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.
    Gass N; Becker R; Sack M; Schwarz AJ; Reinwald J; Cosa-Linan A; Zheng L; von Hohenberg CC; Inta D; Meyer-Lindenberg A; Weber-Fahr W; Gass P; Sartorius A
    Psychopharmacology (Berl); 2018 Apr; 235(4):1055-1068. PubMed ID: 29305627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat.
    Gass N; Schwarz AJ; Sartorius A; Schenker E; Risterucci C; Spedding M; Zheng L; Meyer-Lindenberg A; Weber-Fahr W
    Neuropsychopharmacology; 2014 Mar; 39(4):895-906. PubMed ID: 24136293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.