BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27531052)

  • 1. Peromyscus transcriptomics: Understanding adaptation and gene expression plasticity within and between species of deer mice.
    Munshi-South J; Richardson JL
    Semin Cell Dev Biol; 2017 Jan; 61():131-139. PubMed ID: 27531052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peromyscus mice as a model for studying natural variation.
    Bedford NL; Hoekstra HE
    Elife; 2015 Jun; 4():. PubMed ID: 26083802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA; Connaty AD; McClelland GB; Storz JF
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the reproductive transcriptomic correlates of acute dehydration in males in the desert-adapted rodent, Peromyscus eremicus.
    Kordonowy L; MacManes M
    BMC Genomics; 2017 Jun; 18(1):473. PubMed ID: 28645248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice.
    Velotta JP; Ivy CM; Wolf CJ; Scott GR; Cheviron ZA
    Evolution; 2018 Dec; 72(12):2712-2727. PubMed ID: 30318588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice.
    Schweizer RM; Velotta JP; Ivy CM; Jones MR; Muir SM; Bradburd GS; Storz JF; Scott GR; Cheviron ZA
    PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent.
    Tigano A; Colella JP; MacManes MD
    Mol Ecol; 2020 Apr; 29(7):1300-1314. PubMed ID: 32130752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peromyscus burrowing: A model system for behavioral evolution.
    Hu CK; Hoekstra HE
    Semin Cell Dev Biol; 2017 Jan; 61():107-114. PubMed ID: 27496333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice.
    Schweizer RM; Ivy CM; Natarajan C; Scott GR; Storz JF; Cheviron ZA
    Mol Ecol; 2023 Jul; 32(13):3483-3496. PubMed ID: 37073620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus).
    Harris SE; Munshi-South J
    Mol Ecol; 2017 Nov; 26(22):6336-6350. PubMed ID: 28980357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome resources for the white-footed mouse (Peromyscus leucopus): new genomic tools for investigating ecologically divergent urban and rural populations.
    Harris SE; O'Neill RJ; Munshi-South J
    Mol Ecol Resour; 2015 Mar; 15(2):382-94. PubMed ID: 24980186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection drives altitudinal divergence at the albumin locus in deer mice, Peromyscus maniculatus.
    Storz JF; Dubach JM
    Evolution; 2004 Jun; 58(6):1342-52. PubMed ID: 15266982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution in reproductive tempo and investment across the Peromyscus radiation.
    Wilsterman K; Cunningham K
    J Exp Zool A Ecol Integr Physiol; 2023 Jan; 339(1):13-27. PubMed ID: 36289026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiling of lymph node cells from deer mice infected with Andes virus.
    Schountz T; Shaw TI; Glenn TC; Feldmann H; Prescott J
    BMC Immunol; 2013 Apr; 14():18. PubMed ID: 23570545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin.
    Storz JF; Runck AM; Sabatino SJ; Kelly JK; Ferrand N; Moriyama H; Weber RE; Fago A
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14450-5. PubMed ID: 19667207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited Evidence for Parallel Evolution Among Desert-Adapted Peromyscus Deer Mice.
    Colella JP; Tigano A; Dudchenko O; Omer AD; Khan R; Bochkov ID; Aiden EL; MacManes MD
    J Hered; 2021 May; 112(3):286-302. PubMed ID: 33686424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genome mapping of the deer mouse (Peromyscus maniculatus) reveals greater similarity to rat (Rattus norvegicus) than to the lab mouse (Mus musculus).
    Ramsdell CM; Lewandowski AA; Glenn JL; Vrana PB; O'Neill RJ; Dewey MJ
    BMC Evol Biol; 2008 Feb; 8():65. PubMed ID: 18302785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice.
    Velotta JP; Robertson CE; Schweizer RM; McClelland GB; Cheviron ZA
    Mol Biol Evol; 2020 Aug; 37(8):2309-2321. PubMed ID: 32243546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsatellite markers reveal low frequency of natural hybridization between the white-footed mouse (Peromyscus leucopus) and deer mouse (Peromyscus maniculatus) in southern Quebec, Canada.
    Leo SST; Millien V
    Genome; 2017 May; 60(5):454-463. PubMed ID: 28177836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.