These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 27531102)
1. iRSpot-EL: identify recombination spots with an ensemble learning approach. Liu B; Wang S; Long R; Chou KC Bioinformatics; 2017 Jan; 33(1):35-41. PubMed ID: 27531102 [TBL] [Abstract][Full Text] [Related]
2. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Liu B; Long R; Chou KC Bioinformatics; 2016 Aug; 32(16):2411-8. PubMed ID: 27153623 [TBL] [Abstract][Full Text] [Related]
3. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Liu B; Fang L; Long R; Lan X; Chou KC Bioinformatics; 2016 Feb; 32(3):362-9. PubMed ID: 26476782 [TBL] [Abstract][Full Text] [Related]
4. iRSpot-Pse6NC: Identifying recombination spots in Yang H; Qiu WR; Liu G; Guo FB; Chen W; Chou KC; Lin H Int J Biol Sci; 2018; 14(8):883-891. PubMed ID: 29989083 [TBL] [Abstract][Full Text] [Related]
5. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Liu B; Yang F; Huang DS; Chou KC Bioinformatics; 2018 Jan; 34(1):33-40. PubMed ID: 28968797 [TBL] [Abstract][Full Text] [Related]
8. iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Liu B; Li K; Huang DS; Chou KC Bioinformatics; 2018 Nov; 34(22):3835-3842. PubMed ID: 29878118 [TBL] [Abstract][Full Text] [Related]
9. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Kabir M; Hayat M Mol Genet Genomics; 2016 Feb; 291(1):285-96. PubMed ID: 26319782 [TBL] [Abstract][Full Text] [Related]
10. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou's pseudo components. Zhang L; Kong L Genomics; 2019 May; 111(3):457-464. PubMed ID: 29548799 [TBL] [Abstract][Full Text] [Related]
11. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components. Zhang L; Kong L J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179 [TBL] [Abstract][Full Text] [Related]
12. iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based spare-cross covariance information into Chou's pseudo components. Zhang S; Yang K; Lei Y; Song K Genomics; 2019 Dec; 111(6):1760-1770. PubMed ID: 30529702 [TBL] [Abstract][Full Text] [Related]
13. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Jia J; Zhang L; Liu Z; Xiao X; Chou KC Bioinformatics; 2016 Oct; 32(20):3133-3141. PubMed ID: 27354696 [TBL] [Abstract][Full Text] [Related]
14. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Guo SH; Deng EZ; Xu LQ; Ding H; Lin H; Chen W; Chou KC Bioinformatics; 2014 Jun; 30(11):1522-9. PubMed ID: 24504871 [TBL] [Abstract][Full Text] [Related]
15. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Liu B; Liu F; Fang L; Wang X; Chou KC Bioinformatics; 2015 Apr; 31(8):1307-9. PubMed ID: 25504848 [TBL] [Abstract][Full Text] [Related]
16. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. Liu B; Fang L; Liu F; Wang X; Chou KC J Biomol Struct Dyn; 2016; 34(1):223-35. PubMed ID: 25645238 [TBL] [Abstract][Full Text] [Related]
17. iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components. Al Maruf MA; Shatabda S Genomics; 2019 Jul; 111(4):966-972. PubMed ID: 29935224 [TBL] [Abstract][Full Text] [Related]
18. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach. Liu B; Liu Y; Huang D Biomed Res Int; 2016; 2016():8527435. PubMed ID: 27648451 [TBL] [Abstract][Full Text] [Related]
19. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473 [TBL] [Abstract][Full Text] [Related]
20. iRSpot-DACC: a computational predictor for recombination hot/cold spots identification based on dinucleotide-based auto-cross covariance. Liu B; Liu Y; Jin X; Wang X; Liu B Sci Rep; 2016 Sep; 6():33483. PubMed ID: 27641752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]