These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27531102)

  • 61. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features.
    Rogers MF; Shihab HA; Mort M; Cooper DN; Gaunt TR; Campbell C
    Bioinformatics; 2018 Feb; 34(3):511-513. PubMed ID: 28968714
    [TBL] [Abstract][Full Text] [Related]  

  • 62. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Jul; 7(28):44310-44321. PubMed ID: 27322424
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets.
    Mao H; Wang H
    Bioinformatics; 2017 Mar; 33(5):743-745. PubMed ID: 28062442
    [TBL] [Abstract][Full Text] [Related]  

  • 64. iEnhancer-XG: interpretable sequence-based enhancers and their strength predictor.
    Cai L; Ren X; Fu X; Peng L; Gao M; Zeng X
    Bioinformatics; 2021 May; 37(8):1060-1067. PubMed ID: 33119044
    [TBL] [Abstract][Full Text] [Related]  

  • 65. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC.
    Cheng X; Xiao X; Chou KC
    Genomics; 2018 Jan; 110(1):50-58. PubMed ID: 28818512
    [TBL] [Abstract][Full Text] [Related]  

  • 66. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators.
    Feng CQ; Zhang ZY; Zhu XJ; Lin Y; Chen W; Tang H; Lin H
    Bioinformatics; 2019 May; 35(9):1469-1477. PubMed ID: 30247625
    [TBL] [Abstract][Full Text] [Related]  

  • 67. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.
    Cheng X; Xiao X; Chou KC
    Gene; 2017 Sep; 628():315-321. PubMed ID: 28728979
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters.
    Zhang M; Li F; Marquez-Lago TT; Leier A; Fan C; Kwoh CK; Chou KC; Song J; Jia C
    Bioinformatics; 2019 Sep; 35(17):2957-2965. PubMed ID: 30649179
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recombination spot identification Based on gapped k-mers.
    Wang R; Xu Y; Liu B
    Sci Rep; 2016 Mar; 6():23934. PubMed ID: 27030570
    [TBL] [Abstract][Full Text] [Related]  

  • 70. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Aug; 360(2):339-45. PubMed ID: 17586467
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome.
    Hsueh YP; Idnurm A; Heitman J
    PLoS Genet; 2006 Nov; 2(11):e184. PubMed ID: 17083277
    [TBL] [Abstract][Full Text] [Related]  

  • 72. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation.
    Zhou J; Lu Q; Xu R; He Y; Wang H
    BMC Bioinformatics; 2017 Aug; 18(1):379. PubMed ID: 28851273
    [TBL] [Abstract][Full Text] [Related]  

  • 73. iRNA-PseU: Identifying RNA pseudouridine sites.
    Chen W; Tang H; Ye J; Lin H; Chou KC
    Mol Ther Nucleic Acids; 2016; 5(7):e332. PubMed ID: 28427142
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving tRNAscan-SE Annotation Results via Ensemble Classifiers.
    Zou Q; Guo J; Ju Y; Wu M; Zeng X; Hong Z
    Mol Inform; 2015 Nov; 34(11-12):761-70. PubMed ID: 27491037
    [TBL] [Abstract][Full Text] [Related]  

  • 75. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 76. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition.
    Liu Z; Xiao X; Qiu WR; Chou KC
    Anal Biochem; 2015 Apr; 474():69-77. PubMed ID: 25596338
    [TBL] [Abstract][Full Text] [Related]  

  • 77. GSDS 2.0: an upgraded gene feature visualization server.
    Hu B; Jin J; Guo AY; Zhang H; Luo J; Gao G
    Bioinformatics; 2015 Apr; 31(8):1296-7. PubMed ID: 25504850
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots.
    Bagshaw AT; Pitt JP; Gemmell NJ
    BMC Genomics; 2006 Jul; 7():179. PubMed ID: 16846522
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BiasAway: command-line and web server to generate nucleotide composition-matched DNA background sequences.
    Khan A; Riudavets Puig R; Boddie P; Mathelier A
    Bioinformatics; 2021 Jul; 37(11):1607-1609. PubMed ID: 33135764
    [TBL] [Abstract][Full Text] [Related]  

  • 80. iDHS-DSAMS: Identifying DNase I hypersensitive sites based on the dinucleotide property matrix and ensemble bagged tree.
    Zhang S; Yu Q; He H; Zhu F; Wu P; Gu L; Jiang S
    Genomics; 2020 Mar; 112(2):1282-1289. PubMed ID: 31377426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.