These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2753143)

  • 1. Conserved amino acids in F-helix of bacteriorhodopsin form part of a retinal binding pocket.
    Rothschild KJ; Braiman MS; Mogi T; Stern LJ; Khorana HG
    FEBS Lett; 1989 Jul; 250(2):448-52. PubMed ID: 2753143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle.
    Ahl PL; Stern LJ; Mogi T; Khorana HG; Rothschild KJ
    Biochemistry; 1989 Dec; 28(26):10028-34. PubMed ID: 2575916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analogies between halorhodopsin and bacteriorhodopsin.
    Váró G
    Biochim Biophys Acta; 2000 Aug; 1460(1):220-9. PubMed ID: 10984602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies on ion pumps of the bacterial rhodopsin family.
    Mukohata Y
    Biophys Chem; 1994 May; 50(1-2):191-201. PubMed ID: 8011934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin.
    Bousché O; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 1991 Jun; 30(22):5395-400. PubMed ID: 2036407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromophore/protein and chromophore/anion interactions in halorhodopsin.
    Lanyi JK; Zimányi L; Nakanishi K; Derguini F; Okabe M; Honig B
    Biophys J; 1988 Feb; 53(2):185-91. PubMed ID: 3345330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin.
    Brown LS; Dioumaev AK; Lanyi JK; Spudich EN; Spudich JL
    J Biol Chem; 2001 Aug; 276(35):32495-505. PubMed ID: 11435422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton transport by halorhodopsin.
    Váró G; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 May; 35(21):6604-11. PubMed ID: 8639608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic discrimination of the three rhodopsinlike pigments in Halobacterium halobium membranes.
    Spudich JL; Bogomolni RA
    Biophys J; 1983 Aug; 43(2):243-6. PubMed ID: 6616008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin.
    Mogi T; Marti T; Khorana HG
    J Biol Chem; 1989 Aug; 264(24):14197-201. PubMed ID: 2547787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of bacteriorhodopsin into a chloride ion pump.
    Sasaki J; Brown LS; Chon YS; Kandori H; Maeda A; Needleman R; Lanyi JK
    Science; 1995 Jul; 269(5220):73-5. PubMed ID: 7604281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared study of the halorhodopsin chloride pump.
    Rothschild KJ; Bousché O; Braiman MS; Hasselbacher CA; Spudich JL
    Biochemistry; 1988 Apr; 27(7):2420-4. PubMed ID: 3382631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors.
    Henderson R; Schertler GF
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):379-89. PubMed ID: 1970644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps.
    Muroda K; Nakashima K; Shibata M; Demura M; Kandori H
    Biochemistry; 2012 Jun; 51(23):4677-84. PubMed ID: 22583333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86.
    Rothschild KJ; Gray D; Mogi T; Marti T; Braiman MS; Stern LJ; Khorana HG
    Biochemistry; 1989 Aug; 28(17):7052-9. PubMed ID: 2819048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transport by sensory rhodopsins and its modulation by transducer-binding.
    Sasaki J; Spudich JL
    Biochim Biophys Acta; 2000 Aug; 1460(1):230-9. PubMed ID: 10984603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.
    Ono H; Inoue K; Abe-Yoshizumi R; Kandori H
    J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.