These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2753143)

  • 21. The role of protein-bound water molecules in microbial rhodopsins.
    Gerwert K; Freier E; Wolf S
    Biochim Biophys Acta; 2014 May; 1837(5):606-13. PubMed ID: 24055285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A.
    Rath P; Olson KD; Spudich JL; Rothschild KJ
    Biochemistry; 1994 May; 33(18):5600-6. PubMed ID: 8180184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy.
    Furutani Y; Kandori H
    Biochim Biophys Acta; 2014 May; 1837(5):598-605. PubMed ID: 24041645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shuttling between two protein conformations: the common mechanism for sensory transduction and ion transport.
    Spudich JL; Lanyi JK
    Curr Opin Cell Biol; 1996 Aug; 8(4):452-7. PubMed ID: 8791445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steric constraints in the retinal binding pocket of sensory rhodopsin I.
    Yan B; Xie A; Nienhaus GU; Katsuta Y; Spudich JL
    Biochemistry; 1993 Sep; 32(38):10224-32. PubMed ID: 8399150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the retinal-binding protein in halorhodopsin.
    Lanyi JK; Oesterhelt D
    J Biol Chem; 1982 Mar; 257(5):2674-7. PubMed ID: 7061441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two pumps, one principle: light-driven ion transport in halobacteria.
    Oesterhelt D; Tittor J
    Trends Biochem Sci; 1989 Feb; 14(2):57-61. PubMed ID: 2468194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel bacterial rhodopsins from Haloarcula vallismortis.
    Kitajima T; Hirayama J; Ihara K; Sugiyama Y; Kamo N; Mukohata Y
    Biochem Biophys Res Commun; 1996 Mar; 220(2):341-5. PubMed ID: 8645307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoaffinity labeling of rhodopsin and bacteriorhodopsin.
    Nakanishi K; Zhang H; Lerro KA; Takekuma S; Yamamoto T; Lien TH; Sastry L; Baek DJ; Moquin-Pattey C; Boehm MF
    Biophys Chem; 1995; 56(1-2):13-22. PubMed ID: 7662862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the primary photochemistry of bacteriorhodopsin by low-temperature Fourier-transform infrared spectroscopy.
    Siebert F; Mäntele W
    Eur J Biochem; 1983 Feb; 130(3):565-73. PubMed ID: 6825710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family.
    Soppa J; Duschl J; Oesterhelt D
    J Bacteriol; 1993 May; 175(9):2720-6. PubMed ID: 8478333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport.
    Ludlam GJ; Rothschild KJ
    FEBS Lett; 1997 May; 407(3):285-8. PubMed ID: 9175869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2.
    Tomida S; Ito S; Inoue K; Kandori H
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):684-691. PubMed ID: 29852143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore.
    Rothschild KJ; He YW; Mogi T; Marti T; Stern LJ; Khorana HG
    Biochemistry; 1990 Jun; 29(25):5954-60. PubMed ID: 2166567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle.
    Váró G; Brown LS; Sasaki J; Kandori H; Maeda A; Needleman R; Lanyi JK
    Biochemistry; 1995 Nov; 34(44):14490-9. PubMed ID: 7578054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin.
    Shimono K; Furutani Y; Kandori H; Kamo N
    Biochemistry; 2002 May; 41(20):6504-9. PubMed ID: 12009914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions.
    Song Y; Gunner MR
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16377-82. PubMed ID: 25362051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.