BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27531441)

  • 1. In Planta Localization of Stilbenes within Picea abies Phloem.
    Jyske T; Kuroda K; Suuronen JP; Pranovich A; Roig-Juan S; Aoki D; Fukushima K
    Plant Physiol; 2016 Oct; 172(2):913-928. PubMed ID: 27531441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies).
    Li SH; Nagy NE; Hammerbacher A; Krokene P; Niu XM; Gershenzon J; Schneider B
    Chembiochem; 2012 Dec; 13(18):2707-13. PubMed ID: 23150460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of (+)-Catechin in
    Jyske T; Kuroda K; Keriö S; Pranovich A; Linnakoski R; Hayashi N; Aoki D; Fukushima K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32604938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid chemical characterisation of stilbenes in the root bark of Norway spruce by off-line HPLC/DAD-NMR.
    Mulat DG; Latva-Mäenpää H; Koskela H; Saranpää P; Wähälä K
    Phytochem Anal; 2014; 25(6):529-36. PubMed ID: 24777944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal variation in formation, structure, and chemical properties of phloem in Picea abies as studied by novel microtechniques.
    Jyske TM; Suuronen JP; Pranovich AV; Laakso T; Watanabe U; Kuroda K; Abe H
    Planta; 2015 Sep; 242(3):613-29. PubMed ID: 26105650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stilbene biosynthesis in the needles of spruce Picea jezoensis.
    Kiselev KV; Grigorchuk VP; Ogneva ZV; Suprun AR; Dubrovina AS
    Phytochemistry; 2016 Nov; 131():57-67. PubMed ID: 27576046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.
    Hammerbacher A; Ralph SG; Bohlmann J; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2011 Oct; 157(2):876-90. PubMed ID: 21865488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin.
    Rencoret J; Neiva D; Marques G; Gutiérrez A; Kim H; Gominho J; Pereira H; Ralph J; Del Río JC
    Plant Physiol; 2019 Jul; 180(3):1310-1321. PubMed ID: 31023874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly solvents.
    Co M; Fagerlund A; Engman L; Sunnerheim K; Sjöberg PJ; Turner C
    Phytochem Anal; 2012; 23(1):1-11. PubMed ID: 22144103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark.
    Francezon N; Meda NR; Stevanovic T
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29194377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus.
    Lieutier F; Brignolas F; Sauvard D; Yart A; Galet C; Brunet M; van de Sype H
    Tree Physiol; 2003 Mar; 23(4):247-56. PubMed ID: 12566260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bark of the Spruce
    Suprun AR; Dubrovina AS; Aleynova OA; Kiselev KV
    Metabolites; 2021 Oct; 11(11):. PubMed ID: 34822373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diastereomeric stilbene glucoside dimers from the bark of Norway spruce (Picea abies).
    Li SH; Niu XM; Zahn S; Gershenzon J; Weston J; Schneider B
    Phytochemistry; 2008 Feb; 69(3):772-82. PubMed ID: 18028966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and Photoisomerization of Stilbenes Isolated from the Bark of Norway Spruce Roots.
    Latva-Mäenpää H; Wufu R; Mulat D; Sarjala T; Saranpää P; Wähälä K
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of ultraviolet-C and precursor feeding on stilbene biosynthesis in spruce Picea jezoensis.
    Kiselev KV; Grigorchuk VP; Ogneva ZV; Suprun AR; Dubrovina AS
    J Plant Physiol; 2019; 234-235():133-137. PubMed ID: 30784851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar, amino acid and inorganic ion profiling of the honeydew from different hemipteran species feeding on Abies alba and Picea abies.
    Shaaban B; Seeburger V; Schroeder A; Lohaus G
    PLoS One; 2020; 15(1):e0228171. PubMed ID: 31978201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive Investigation of Phloem Structure by 3D Synchrotron X-Ray Microtomography.
    Suuronen JP; Jyske T
    Methods Mol Biol; 2019; 2014():37-54. PubMed ID: 31197785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of salicifoline in freeze-fixed stems of Magnolia kobus as observed by cryo-TOF-SIMS.
    Okumura W; Aoki D; Matsushita Y; Yoshida M; Fukushima K
    Sci Rep; 2017 Jul; 7(1):5939. PubMed ID: 28725003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of Antioxidative Compounds within Bark during Storage: A Case of Norway Spruce Logs.
    Jyske T; Brännström H; Sarjala T; Hellström J; Halmemies E; Raitanen JE; Kaseva J; Lagerquist L; Eklund P; Nurmi J
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32942658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene.
    Yu CK; Lam CN; Springob K; Schmidt J; Chu IK; Lo C
    Plant Cell Physiol; 2006 Jul; 47(7):1017-21. PubMed ID: 16731548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.