These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27531694)

  • 1. Data assimilation for identification of cardiovascular network characteristics.
    Lal R; Mohammadi B; Nicoud F
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27531694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.
    Caiazzo A; Caforio F; Montecinos G; Muller LO; Blanco PJ; Toro EF
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2843. PubMed ID: 27781397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data.
    Lal R; Nicoud F; Bars EL; Deverdun J; Molino F; Costalat V; Mohammadi B
    Ann Biomed Eng; 2017 Nov; 45(11):2574-2591. PubMed ID: 28831614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backward sensitivity analysis and reduced-order covariance estimation in noninvasive parameter identification for cerebral arteries.
    Rapadamnaba R; Nicoud F; Mohammadi B
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3170. PubMed ID: 30426715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel periodic boundary condition for computational hemodynamics studies.
    Bahramian F; Mohammadi H
    Proc Inst Mech Eng H; 2014 Jul; 228(7):643-51. PubMed ID: 25015666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.
    Pan Q; Wang R; Reglin B; Fang L; Pries AR; Ning G
    Biomed Mater Eng; 2014; 24(6):2341-7. PubMed ID: 25226934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced-Order Unscented Kalman Filter With Observations in the Frequency Domain: Application to Computational Hemodynamics.
    Muller LO; Caiazzo A; Blanco PJ
    IEEE Trans Biomed Eng; 2019 May; 66(5):1269-1276. PubMed ID: 30273122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis.
    Pant S; Fabrèges B; Gerbeau JF; Vignon-Clementel IE
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1614-48. PubMed ID: 25345820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kalman filter data assimilation: targeting observations and parameter estimation.
    Bellsky T; Kostelich EJ; Mahalov A
    Chaos; 2014 Jun; 24(2):024406. PubMed ID: 24985460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique.
    Ghadarghadar N; Agrawal SK; Samani A; Ladak HM
    Comput Methods Programs Biomed; 2013 Jun; 110(3):231-9. PubMed ID: 23270964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.
    Lombardi D
    Int J Numer Method Biomed Eng; 2014 Feb; 30(2):160-79. PubMed ID: 24039152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective fractal-tree closure model for simulating blood flow in large arterial networks.
    Perdikaris P; Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physics based approach to the pulse wave velocity prediction in compliant arterial segments.
    Liberson AS; Lillie JS; Day SW; Borkholder DA
    J Biomech; 2016 Oct; 49(14):3460-3466. PubMed ID: 27665351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical modeling of cardiovascular signals and parameter estimation based on the extended Kalman filter.
    McNames J; Aboy M
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):119-29. PubMed ID: 18232353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of hidden state variables of the Intracranial system using constrained nonlinear Kalman filters.
    Hu X; Nenov V; Bergsneider M; Glenn TC; Vespa P; Martin N
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):597-610. PubMed ID: 17405367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential parameter estimation for fluid-structure problems: application to hemodynamics.
    Bertoglio C; Moireau P; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012 Apr; 28(4):434-55. PubMed ID: 25365657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laguerre-model blind system identification: cardiovascular dynamics estimated from multiple peripheral circulatory signals.
    McCombie DB; Reisner AT; Asada HH
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1889-901. PubMed ID: 16285393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.