These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 27531888)
1. Abundant protein phosphorylation potentially regulates Arabidopsis anther development. Ye J; Zhang Z; You C; Zhang X; Lu J; Ma H J Exp Bot; 2016 Sep; 67(17):4993-5008. PubMed ID: 27531888 [TBL] [Abstract][Full Text] [Related]
2. Global Quantitative Proteomics Studies Revealed Tissue-Preferential Expression and Phosphorylation of Regulatory Proteins in Lu J; Fu Y; Li M; Wang S; Wang J; Yang Q; Ye J; Zhang X; Ma H; Chang F Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32854314 [TBL] [Abstract][Full Text] [Related]
3. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Hord CL; Sun YJ; Pillitteri LJ; Torii KU; Wang H; Zhang S; Ma H Mol Plant; 2008 Jul; 1(4):645-58. PubMed ID: 19825569 [TBL] [Abstract][Full Text] [Related]
5. CIK Receptor Kinases Determine Cell Fate Specification during Early Anther Development in Arabidopsis. Cui Y; Hu C; Zhu Y; Cheng K; Li X; Wei Z; Xue L; Lin F; Shi H; Yi J; Hou S; He K; Li J; Gou X Plant Cell; 2018 Oct; 30(10):2383-2401. PubMed ID: 30201822 [TBL] [Abstract][Full Text] [Related]
6. The Arabidopsis LFR gene is required for the formation of anther cell layers and normal expression of key regulatory genes. Wang XT; Yuan C; Yuan TT; Cui SJ Mol Plant; 2012 Sep; 5(5):993-1000. PubMed ID: 22461668 [TBL] [Abstract][Full Text] [Related]
7. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings. Aryal UK; Ross AR; Krochko JE PLoS One; 2015; 10(7):e0130763. PubMed ID: 26158488 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the phosphoproteome of mature Arabidopsis pollen. Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563 [TBL] [Abstract][Full Text] [Related]
9. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants. Al-Momani S; Qi D; Ren Z; Jones AR J Proteomics; 2018 Jun; 181():152-159. PubMed ID: 29654922 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase Is Required for Anther Development. Zhao F; Zheng YF; Zeng T; Sun R; Yang JY; Li Y; Ren DT; Ma H; Xu ZH; Bai SN Plant Physiol; 2017 Apr; 173(4):2265-2277. PubMed ID: 28209842 [TBL] [Abstract][Full Text] [Related]
11. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Zhu E; You C; Wang S; Cui J; Niu B; Wang Y; Qi J; Ma H; Chang F Plant J; 2015 Sep; 83(6):976-90. PubMed ID: 26216374 [TBL] [Abstract][Full Text] [Related]
12. Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Yang SL; Xie LF; Mao HZ; Puah CS; Yang WC; Jiang L; Sundaresan V; Ye D Plant Cell; 2003 Dec; 15(12):2792-804. PubMed ID: 14615601 [TBL] [Abstract][Full Text] [Related]
13. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis. Lin LL; Hsu CL; Hu CW; Ko SY; Hsieh HL; Huang HC; Juan HF BMC Genomics; 2015 Jul; 16(1):533. PubMed ID: 26187819 [TBL] [Abstract][Full Text] [Related]
14. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
15. [Global proteomic and phosphoproteomic analysis of the premature maize anther]. Zhang Z; Ye J; Long H; Hong Y; Lu P Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):937-955. PubMed ID: 29019215 [TBL] [Abstract][Full Text] [Related]
16. Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination. Li Z; Wang Y; Huang J; Ahsan N; Biener G; Paprocki J; Thelen JJ; Raicu V; Zhao D Plant Physiol; 2017 Jan; 173(1):326-337. PubMed ID: 27920157 [TBL] [Abstract][Full Text] [Related]
17. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function. Li X; Ye J; Ma H; Lu P Plant J; 2018 Jan; 93(1):142-154. PubMed ID: 29124795 [TBL] [Abstract][Full Text] [Related]
18. Control of anther cell differentiation: a teamwork of receptor-like kinases. Zhao D Sex Plant Reprod; 2009 Dec; 22(4):221-8. PubMed ID: 20033443 [TBL] [Abstract][Full Text] [Related]
19. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Zhang W; Sun Y; Timofejeva L; Chen C; Grossniklaus U; Ma H Development; 2006 Aug; 133(16):3085-95. PubMed ID: 16831835 [TBL] [Abstract][Full Text] [Related]
20. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Karlova R; Boeren S; van Dongen W; Kwaaitaal M; Aker J; Vervoort J; de Vries S Proteomics; 2009 Jan; 9(2):368-79. PubMed ID: 19105183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]