These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2753214)
1. The kinetics and thermodynamics of glucose transport in human erythrocytes: indications for the molecular mechanism of transport. Lowe AG Biochem Soc Trans; 1989 Jun; 17(3):435-8. PubMed ID: 2753214 [No Abstract] [Full Text] [Related]
2. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins. Goldin SM; Rhoden V J Biol Chem; 1978 Apr; 253(8):2575-83. PubMed ID: 632287 [No Abstract] [Full Text] [Related]
3. Membrane transport in resealed haemoglobin-containing human erythrocyte 'ghosts' prepared by a dialysis procedure. Sprandel U; Hubbard AR; Chalmers RA Biochem Biophys Res Commun; 1979 Nov; 91(1):79-85. PubMed ID: 518635 [No Abstract] [Full Text] [Related]
4. The monosaccharide transport system of the human erythrocyte. Solubilization and characterization on the basis of cytochalasin B binding. Zoccoli MA; Baldwin SA; Lienhard GE J Biol Chem; 1978 Oct; 253(19):6923-30. PubMed ID: 690133 [No Abstract] [Full Text] [Related]
5. Thermodynamics of ouabain binding to human erythrocytes. Hermann JJ Biochim Biophys Acta; 1980 Jun; 598(3):456-62. PubMed ID: 7388021 [No Abstract] [Full Text] [Related]
6. The possible role of glucose-pentapeptides extracted from erythrocyte membranes in the regulation of glucose transport [proceedings]. Davis RJ; Weiss JB Biochem Soc Trans; 1980 Jun; 8(3):315-6. PubMed ID: 7399063 [No Abstract] [Full Text] [Related]
7. The effect of the strongly bound protein fraction on sugar transport in human erythrocyte ghosts. Benes I Biochim Biophys Acta; 1978 Jul; 511(1):120-4. PubMed ID: 667055 [TBL] [Abstract][Full Text] [Related]
8. Reconstitution of the monosaccharide-transport system of the human erythrocyte membrane. Nickson JK; Jones MN Biochem Soc Trans; 1977; 5(1):147-9. PubMed ID: 892146 [No Abstract] [Full Text] [Related]
9. The temperature dependence of the exchange transport of glucose in human erythrocytes. Lacko L; Wittke B; Geck P J Cell Physiol; 1973 Oct; 82(2):213-8. PubMed ID: 4753421 [No Abstract] [Full Text] [Related]
10. Relationship between H+ transfer through human erythrocyte membrane and temperature. Mishchenko AA; Irzhak LI Bull Exp Biol Med; 2004 Jul; 138(1):45-6. PubMed ID: 15514720 [TBL] [Abstract][Full Text] [Related]
11. Evidence for multiple affinities for D-glucose inside the human erythrocyte membrane [proceedings]. Baker GF; Naftalin RJ J Physiol; 1977 Oct; 271(2):46P-47P. PubMed ID: 925997 [No Abstract] [Full Text] [Related]
12. The influence of the steriod hormones on the physical state of human erythrocyte menbranes. Lacko L; Wittke B Experientia; 1977 Feb; 33(2):191-2. PubMed ID: 844549 [No Abstract] [Full Text] [Related]
13. Human erythrocyte anion exchange site characterised using a fluorescent probe. Dix JA; Verkman AS; Solomon AK; Cantley LC Nature; 1979 Nov; 282(5738):520-2. PubMed ID: 503233 [No Abstract] [Full Text] [Related]
14. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes. Fröman G Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255 [TBL] [Abstract][Full Text] [Related]
15. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport. Mullins RE; Langdon RG Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410 [TBL] [Abstract][Full Text] [Related]
16. Diethylpyrocarbonate interferes with lipid-protein interaction and glucose transport in the human red cell membrane. Zimmer G; Lacko L; Wittke B Experientia; 1979 May; 35(5):610-2. PubMed ID: 36290 [TBL] [Abstract][Full Text] [Related]
17. Transport of uric acid and L-phenylalanine by resealed erythrocyte 'ghosts' prepared by a dialysis technique [proceedings]. Sprandel U; Hubbard AR; Chalmers RA Biochem Soc Trans; 1979 Oct; 7(5):957-8. PubMed ID: 510755 [No Abstract] [Full Text] [Related]
18. Interaction of DL-, D- and L-propranolol with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1979; 29(11):1685-7. PubMed ID: 44472 [TBL] [Abstract][Full Text] [Related]
19. Can glucose transport across the human erythrocyte membrane be sustained against a concentration gradient? [proceedings]. Mahatma M; Thomas HW J Physiol; 1979 Nov; 296():104P. PubMed ID: 529066 [No Abstract] [Full Text] [Related]
20. Infinite cis influx of cyclic AMP into human erythrocyte ghosts. Holman GD Biochim Biophys Acta; 1979 Jun; 553(3):489-94. PubMed ID: 222317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]