These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2753214)
21. Developmental changes in glucose transport of guinea pig erythrocytes. Kondo T; Beutler E J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191 [TBL] [Abstract][Full Text] [Related]
22. The effect of diamide and glutathione on the uptake of glucose by human erythrocytes. Leoncini G; Maresca M Ital J Biochem; 1983; 32(2):102-10. PubMed ID: 6629727 [TBL] [Abstract][Full Text] [Related]
23. A high affinity site for sugar transport at the inner face of the human erythrocyte membrane? Foster DM; Jacquez JA; Lieb WR; Stein WD Biochim Biophys Acta; 1979 Aug; 555(2):349-51. PubMed ID: 476109 [TBL] [Abstract][Full Text] [Related]
24. Uptake of chloroquine by human erythrocytes. Ferrari V; Cutler DJ Biochem Pharmacol; 1990 Feb; 39(4):753-62. PubMed ID: 2306282 [TBL] [Abstract][Full Text] [Related]
25. The stereospecific D-glucose transport protein in cholate extracts of human erythrocyte membranes. Molecular sieve chromatography and estimation of molecular weight. Acevedo F; Lundahl P; Fröman G Biochim Biophys Acta; 1981 Nov; 648(2):254-62. PubMed ID: 7197989 [No Abstract] [Full Text] [Related]
26. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Gorga FR; Lienhard GE Biochemistry; 1981 Sep; 20(18):5108-13. PubMed ID: 7295669 [TBL] [Abstract][Full Text] [Related]
27. Differential perturbation of erythrocyte membrane-associated transport and enzyme activities by structurally related lipophilic compounds. Aberlin ME; Litman GW Biochim Biophys Acta; 1979 May; 553(1):96-106. PubMed ID: 110344 [TBL] [Abstract][Full Text] [Related]
28. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 2. Identification of the transporter. Mullins RE; Langdon RG Biochemistry; 1980 Mar; 19(6):1205-12. PubMed ID: 7189411 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of glucose transport in human erythrocytes by 2,3-dioxoindole (isatin). Gargari ML; Bansal RC; Singh K; Mahmood A Experientia; 1994 Sep; 50(9):833-6. PubMed ID: 7925850 [TBL] [Abstract][Full Text] [Related]
30. Asymmetry in human erythrocyte sugar transport. Miller DM J Biol Chem; 1975 May; 250(10):3637-8. PubMed ID: 1126930 [No Abstract] [Full Text] [Related]
31. [Influence of chlorpromazine and temperature on glucose transport in human erythrocyte ghosts]. Matus VK; Vorobeĭ AV; Chernitskiĭ EA Biofizika; 1977; 22(5):861-5. PubMed ID: 911906 [TBL] [Abstract][Full Text] [Related]
32. Temperature dependence of glucose transport in erythrocytes from normal and alloxan-diabetic rats. Abumrad NA; Briscoe P; Beth AH; Whitesell RR Biochim Biophys Acta; 1988 Feb; 938(2):222-30. PubMed ID: 3342233 [TBL] [Abstract][Full Text] [Related]
33. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity. Jung CY; Pinkofsky HB; Cowden MW Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240 [TBL] [Abstract][Full Text] [Related]
34. Is there a high affinity site for sugar transport at the inner face of the human red cell membrane? Lieb WR; Stein WD J Theor Biol; 1977 Nov; 69(2):311-9. PubMed ID: 592880 [No Abstract] [Full Text] [Related]
35. Inhibition of anion and glucose permeabilities by anesthetics in erythrocytes. The mechanisms of action of positively and negatively charged drugs. Motais R; Baroin A; Motais A; Baldy S Biochim Biophys Acta; 1980 Jul; 599(2):673-88. PubMed ID: 6105880 [TBL] [Abstract][Full Text] [Related]
36. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore. Bowman RJ; Lwitt DG Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270 [TBL] [Abstract][Full Text] [Related]
37. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells. Weiser MB; Razin M; Stein WD Biochim Biophys Acta; 1983 Jan; 727(2):379-88. PubMed ID: 6838879 [TBL] [Abstract][Full Text] [Related]
38. Reconstitution of glucose transport using human erythrocyte band 3. Shelton RL; Langdon RG Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973 [TBL] [Abstract][Full Text] [Related]
39. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. Craik JD; Young JD; Cheeseman CI Am J Physiol; 1998 Jan; 274(1):R112-9. PubMed ID: 9458906 [TBL] [Abstract][Full Text] [Related]
40. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts. Taverna RD; Langdon RG Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]