These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27532329)
1. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis. Guo W; Chen Y; Wei N; Feng X PLoS One; 2016; 11(8):e0161448. PubMed ID: 27532329 [TBL] [Abstract][Full Text] [Related]
2. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428 [TBL] [Abstract][Full Text] [Related]
3. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. Ding MZ; Wang X; Yang Y; Yuan YJ OMICS; 2011 Oct; 15(10):647-53. PubMed ID: 21978393 [TBL] [Abstract][Full Text] [Related]
4. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C. Chen H; Li J; Wan C; Fang Q; Bai F; Zhao X FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31374572 [TBL] [Abstract][Full Text] [Related]
5. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. Wang X; Li BZ; Ding MZ; Zhang WW; Yuan YJ OMICS; 2013 Mar; 17(3):150-9. PubMed ID: 23421908 [TBL] [Abstract][Full Text] [Related]
6. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Chen Y; Sheng J; Jiang T; Stevens J; Feng X; Wei N Biotechnol Biofuels; 2016; 9():9. PubMed ID: 26766964 [TBL] [Abstract][Full Text] [Related]
9. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery. Unrean P Bioprocess Biosyst Eng; 2017 Apr; 40(4):611-623. PubMed ID: 28025701 [TBL] [Abstract][Full Text] [Related]
10. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae. Pornkamol U; Franzen CJ Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198 [TBL] [Abstract][Full Text] [Related]
12. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. Kumari R; Pramanik K J Biosci Bioeng; 2012 Dec; 114(6):622-9. PubMed ID: 22867797 [TBL] [Abstract][Full Text] [Related]
13. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Lin FM; Qiao B; Yuan YJ Appl Environ Microbiol; 2009 Jun; 75(11):3765-76. PubMed ID: 19363068 [TBL] [Abstract][Full Text] [Related]
14. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833 [TBL] [Abstract][Full Text] [Related]
15. [Improvement of inhibitors tolerance of Saccharomyces cerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4]. He Y; Zi L; Zhang B; Xu J; Wang D; Bai F Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):906-915. PubMed ID: 29943536 [TBL] [Abstract][Full Text] [Related]
16. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Feng X; Zhao H Microb Cell Fact; 2013 Nov; 12():114. PubMed ID: 24245823 [TBL] [Abstract][Full Text] [Related]
17. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review]. Li H; Zhang X; Shen Y; Dong Y; Bao X Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Li BZ; Yuan YJ Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542 [TBL] [Abstract][Full Text] [Related]
19. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Palmqvist E; Grage H; Meinander NQ; Hahn-Hägerdal B Biotechnol Bioeng; 1999 Apr; 63(1):46-55. PubMed ID: 10099580 [TBL] [Abstract][Full Text] [Related]