These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27532490)

  • 1. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design.
    Tan YS; Reeks J; Brown CJ; Thean D; Ferrer Gago FJ; Yuen TY; Goh ET; Lee XE; Jennings CE; Joseph TL; Lakshminarayanan R; Lane DP; Noble ME; Verma CS
    J Phys Chem Lett; 2016 Sep; 7(17):3452-7. PubMed ID: 27532490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations.
    Raman EP; Yu W; Guvench O; Mackerell AD
    J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites.
    Tze-Yang Ng J; Tan YS
    J Chem Theory Comput; 2022 Mar; 18(3):1969-1981. PubMed ID: 35175753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.
    Tan YS; Spring DR; Abell C; Verma CS
    J Chem Theory Comput; 2015 Jul; 11(7):3199-210. PubMed ID: 26575757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
    Mondal J; Ahalawat N; Pandit S; Kay LE; Vallurupalli P
    PLoS Comput Biol; 2018 May; 14(5):e1006180. PubMed ID: 29775455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.
    Freed AS; Garde S; Cramer SM
    J Phys Chem B; 2011 Nov; 115(45):13320-7. PubMed ID: 21942536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straightforward Incorporation of Multiple Ligand Types into Molecular Dynamics Simulations for Efficient Binding Site Detection and Characterization.
    Tan YS; Verma CS
    J Chem Theory Comput; 2020 Oct; 16(10):6633-6644. PubMed ID: 32810406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A; Orro A; Carlsson J
    J Chem Inf Model; 2018 Feb; 58(2):350-361. PubMed ID: 29308882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.
    Huan X; Shi J; Lim L; Mitra S; Zhu W; Qin H; Pasquale EB; Song J
    PLoS One; 2013; 8(9):e74040. PubMed ID: 24086308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins.
    Zuzic L; Marzinek JK; Warwicker J; Bond PJ
    J Chem Theory Comput; 2020 Sep; 16(9):5948-5959. PubMed ID: 32786908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing target flexibility and target denaturation in computational fragment-based inhibitor discovery.
    Foster TJ; MacKerell AD; Guvench O
    J Comput Chem; 2012 Sep; 33(23):1880-91. PubMed ID: 22641475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are induced fit protein conformational changes caused by ligand-binding predictable? A molecular dynamics investigation.
    Gao C; Desaphy J; Vieth M
    J Comput Chem; 2017 Jun; 38(15):1229-1237. PubMed ID: 28419481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico mechanistic profiling to probe small molecule binding to sulfotransferases.
    Martiny VY; Carbonell P; Lagorce D; Villoutreix BO; Moroy G; Miteva MA
    PLoS One; 2013; 8(9):e73587. PubMed ID: 24039991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the NF-κB/IκBα complex via fragment-based E-Pharmacophore virtual screening and binary QSAR models.
    Kanan T; Kanan D; Erol I; Yazdi S; Stein M; Durdagi S
    J Mol Graph Model; 2019 Jan; 86():264-277. PubMed ID: 30415122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.
    Hu G; Xu S; Wang J
    Chem Biol Drug Des; 2015 Dec; 86(6):1351-9. PubMed ID: 26032728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.